MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  upgrspthswlk Structured version   Visualization version   GIF version

Theorem upgrspthswlk 27522
Description: The set of simple paths in a pseudograph, expressed as walk. Notice that this theorem would not hold for arbitrary hypergraphs, since a walk with distinct vertices does not need to be a trail: let E = { p0, p1, p2 } be a hyperedge, then ( p0, e, p1, e, p2 ) is walk with distinct vertices, but not with distinct edges. Therefore, E is not a trail and, by definition, also no path. (Contributed by AV, 11-Jan-2021.) (Proof shortened by AV, 17-Jan-2021.) (Proof shortened by AV, 30-Oct-2021.)
Assertion
Ref Expression
upgrspthswlk (𝐺 ∈ UPGraph → (SPaths‘𝐺) = {⟨𝑓, 𝑝⟩ ∣ (𝑓(Walks‘𝐺)𝑝 ∧ Fun 𝑝)})
Distinct variable group:   𝑓,𝐺,𝑝

Proof of Theorem upgrspthswlk
StepHypRef Expression
1 spthsfval 27506 . 2 (SPaths‘𝐺) = {⟨𝑓, 𝑝⟩ ∣ (𝑓(Trails‘𝐺)𝑝 ∧ Fun 𝑝)}
2 upgrwlkdvde 27521 . . . . . . . . . 10 ((𝐺 ∈ UPGraph ∧ 𝑓(Walks‘𝐺)𝑝 ∧ Fun 𝑝) → Fun 𝑓)
323exp 1115 . . . . . . . . 9 (𝐺 ∈ UPGraph → (𝑓(Walks‘𝐺)𝑝 → (Fun 𝑝 → Fun 𝑓)))
43com23 86 . . . . . . . 8 (𝐺 ∈ UPGraph → (Fun 𝑝 → (𝑓(Walks‘𝐺)𝑝 → Fun 𝑓)))
54imp 409 . . . . . . 7 ((𝐺 ∈ UPGraph ∧ Fun 𝑝) → (𝑓(Walks‘𝐺)𝑝 → Fun 𝑓))
65pm4.71d 564 . . . . . 6 ((𝐺 ∈ UPGraph ∧ Fun 𝑝) → (𝑓(Walks‘𝐺)𝑝 ↔ (𝑓(Walks‘𝐺)𝑝 ∧ Fun 𝑓)))
7 istrl 27481 . . . . . 6 (𝑓(Trails‘𝐺)𝑝 ↔ (𝑓(Walks‘𝐺)𝑝 ∧ Fun 𝑓))
86, 7syl6rbbr 292 . . . . 5 ((𝐺 ∈ UPGraph ∧ Fun 𝑝) → (𝑓(Trails‘𝐺)𝑝𝑓(Walks‘𝐺)𝑝))
98ex 415 . . . 4 (𝐺 ∈ UPGraph → (Fun 𝑝 → (𝑓(Trails‘𝐺)𝑝𝑓(Walks‘𝐺)𝑝)))
109pm5.32rd 580 . . 3 (𝐺 ∈ UPGraph → ((𝑓(Trails‘𝐺)𝑝 ∧ Fun 𝑝) ↔ (𝑓(Walks‘𝐺)𝑝 ∧ Fun 𝑝)))
1110opabbidv 5135 . 2 (𝐺 ∈ UPGraph → {⟨𝑓, 𝑝⟩ ∣ (𝑓(Trails‘𝐺)𝑝 ∧ Fun 𝑝)} = {⟨𝑓, 𝑝⟩ ∣ (𝑓(Walks‘𝐺)𝑝 ∧ Fun 𝑝)})
121, 11syl5eq 2871 1 (𝐺 ∈ UPGraph → (SPaths‘𝐺) = {⟨𝑓, 𝑝⟩ ∣ (𝑓(Walks‘𝐺)𝑝 ∧ Fun 𝑝)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1536  wcel 2113   class class class wbr 5069  {copab 5131  ccnv 5557  Fun wfun 6352  cfv 6358  UPGraphcupgr 26868  Walkscwlks 27381  Trailsctrls 27475  SPathscspths 27497
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-ifp 1058  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-1st 7692  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-2o 8106  df-oadd 8109  df-er 8292  df-map 8411  df-pm 8412  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-dju 9333  df-card 9371  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-nn 11642  df-2 11703  df-n0 11901  df-xnn0 11971  df-z 11985  df-uz 12247  df-fz 12896  df-fzo 13037  df-hash 13694  df-word 13865  df-edg 26836  df-uhgr 26846  df-upgr 26870  df-wlks 27384  df-trls 27477  df-spths 27501
This theorem is referenced by:  upgrwlkdvspth  27523
  Copyright terms: Public domain W3C validator