MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  upgruhgr Structured version   Visualization version   GIF version

Theorem upgruhgr 26881
Description: An undirected pseudograph is an undirected hypergraph. (Contributed by Alexander van der Vekens, 27-Dec-2017.) (Revised by AV, 10-Oct-2020.)
Assertion
Ref Expression
upgruhgr (𝐺 ∈ UPGraph → 𝐺 ∈ UHGraph)

Proof of Theorem upgruhgr
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2821 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
2 eqid 2821 . . . 4 (iEdg‘𝐺) = (iEdg‘𝐺)
31, 2upgrf 26865 . . 3 (𝐺 ∈ UPGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
4 ssrab2 4056 . . 3 {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ⊆ (𝒫 (Vtx‘𝐺) ∖ {∅})
5 fss 6522 . . 3 (((iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ∧ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ⊆ (𝒫 (Vtx‘𝐺) ∖ {∅})) → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 (Vtx‘𝐺) ∖ {∅}))
63, 4, 5sylancl 588 . 2 (𝐺 ∈ UPGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 (Vtx‘𝐺) ∖ {∅}))
71, 2isuhgr 26839 . 2 (𝐺 ∈ UPGraph → (𝐺 ∈ UHGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 (Vtx‘𝐺) ∖ {∅})))
86, 7mpbird 259 1 (𝐺 ∈ UPGraph → 𝐺 ∈ UHGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2110  {crab 3142  cdif 3933  wss 3936  c0 4291  𝒫 cpw 4539  {csn 4561   class class class wbr 5059  dom cdm 5550  wf 6346  cfv 6350  cle 10670  2c2 11686  chash 13684  Vtxcvtx 26775  iEdgciedg 26776  UHGraphcuhgr 26835  UPGraphcupgr 26859
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-nul 5203
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3497  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4833  df-br 5060  df-opab 5122  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-fv 6358  df-uhgr 26837  df-upgr 26861
This theorem is referenced by:  umgruhgr  26883  upgrle2  26884  edglnl  26922  numedglnl  26923  usgruhgr  26962  subupgr  27063  upgrspan  27069  upgrreslem  27080  upgrres  27082  finsumvtxdg2ssteplem1  27321  finsumvtxdg2size  27326  upgrewlkle2  27382  upgredginwlk  27411  wlkiswwlks1  27639  wlkiswwlksupgr2  27649  eulerpathpr  28013  eulercrct  28015  upgracycumgr  32395  isomuspgrlem2c  43988
  Copyright terms: Public domain W3C validator