MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uptx Structured version   Visualization version   GIF version

Theorem uptx 22227
Description: Universal property of the binary topological product. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
uptx.1 𝑇 = (𝑅 ×t 𝑆)
uptx.2 𝑋 = 𝑅
uptx.3 𝑌 = 𝑆
uptx.4 𝑍 = (𝑋 × 𝑌)
uptx.5 𝑃 = (1st𝑍)
uptx.6 𝑄 = (2nd𝑍)
Assertion
Ref Expression
uptx ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → ∃! ∈ (𝑈 Cn 𝑇)(𝐹 = (𝑃) ∧ 𝐺 = (𝑄)))
Distinct variable groups:   ,𝐹   ,𝐺   𝑃,   𝑄,   𝑅,   𝑇,   𝑆,   𝑈,   ,𝑋   ,𝑌
Allowed substitution hint:   𝑍()

Proof of Theorem uptx
Dummy variables 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2821 . . . . 5 𝑈 = 𝑈
2 eqid 2821 . . . . 5 (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩) = (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)
31, 2txcnmpt 22226 . . . 4 ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩) ∈ (𝑈 Cn (𝑅 ×t 𝑆)))
4 uptx.1 . . . . 5 𝑇 = (𝑅 ×t 𝑆)
54oveq2i 7161 . . . 4 (𝑈 Cn 𝑇) = (𝑈 Cn (𝑅 ×t 𝑆))
63, 5eleqtrrdi 2924 . . 3 ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩) ∈ (𝑈 Cn 𝑇))
7 uptx.2 . . . . . 6 𝑋 = 𝑅
81, 7cnf 21848 . . . . 5 (𝐹 ∈ (𝑈 Cn 𝑅) → 𝐹: 𝑈𝑋)
9 uptx.3 . . . . . 6 𝑌 = 𝑆
101, 9cnf 21848 . . . . 5 (𝐺 ∈ (𝑈 Cn 𝑆) → 𝐺: 𝑈𝑌)
11 ffn 6508 . . . . . . . 8 (𝐹: 𝑈𝑋𝐹 Fn 𝑈)
1211adantr 483 . . . . . . 7 ((𝐹: 𝑈𝑋𝐺: 𝑈𝑌) → 𝐹 Fn 𝑈)
13 fo1st 7703 . . . . . . . . . 10 1st :V–onto→V
14 fofn 6586 . . . . . . . . . 10 (1st :V–onto→V → 1st Fn V)
1513, 14ax-mp 5 . . . . . . . . 9 1st Fn V
16 ssv 3990 . . . . . . . . 9 (𝑋 × 𝑌) ⊆ V
17 fnssres 6464 . . . . . . . . 9 ((1st Fn V ∧ (𝑋 × 𝑌) ⊆ V) → (1st ↾ (𝑋 × 𝑌)) Fn (𝑋 × 𝑌))
1815, 16, 17mp2an 690 . . . . . . . 8 (1st ↾ (𝑋 × 𝑌)) Fn (𝑋 × 𝑌)
19 ffvelrn 6843 . . . . . . . . . . . 12 ((𝐹: 𝑈𝑋𝑥 𝑈) → (𝐹𝑥) ∈ 𝑋)
20 ffvelrn 6843 . . . . . . . . . . . 12 ((𝐺: 𝑈𝑌𝑥 𝑈) → (𝐺𝑥) ∈ 𝑌)
21 opelxpi 5586 . . . . . . . . . . . 12 (((𝐹𝑥) ∈ 𝑋 ∧ (𝐺𝑥) ∈ 𝑌) → ⟨(𝐹𝑥), (𝐺𝑥)⟩ ∈ (𝑋 × 𝑌))
2219, 20, 21syl2an 597 . . . . . . . . . . 11 (((𝐹: 𝑈𝑋𝑥 𝑈) ∧ (𝐺: 𝑈𝑌𝑥 𝑈)) → ⟨(𝐹𝑥), (𝐺𝑥)⟩ ∈ (𝑋 × 𝑌))
2322anandirs 677 . . . . . . . . . 10 (((𝐹: 𝑈𝑋𝐺: 𝑈𝑌) ∧ 𝑥 𝑈) → ⟨(𝐹𝑥), (𝐺𝑥)⟩ ∈ (𝑋 × 𝑌))
2423fmpttd 6873 . . . . . . . . 9 ((𝐹: 𝑈𝑋𝐺: 𝑈𝑌) → (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩): 𝑈⟶(𝑋 × 𝑌))
25 ffn 6508 . . . . . . . . 9 ((𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩): 𝑈⟶(𝑋 × 𝑌) → (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩) Fn 𝑈)
2624, 25syl 17 . . . . . . . 8 ((𝐹: 𝑈𝑋𝐺: 𝑈𝑌) → (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩) Fn 𝑈)
2724frnd 6515 . . . . . . . 8 ((𝐹: 𝑈𝑋𝐺: 𝑈𝑌) → ran (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩) ⊆ (𝑋 × 𝑌))
28 fnco 6459 . . . . . . . 8 (((1st ↾ (𝑋 × 𝑌)) Fn (𝑋 × 𝑌) ∧ (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩) Fn 𝑈 ∧ ran (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩) ⊆ (𝑋 × 𝑌)) → ((1st ↾ (𝑋 × 𝑌)) ∘ (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)) Fn 𝑈)
2918, 26, 27, 28mp3an2i 1462 . . . . . . 7 ((𝐹: 𝑈𝑋𝐺: 𝑈𝑌) → ((1st ↾ (𝑋 × 𝑌)) ∘ (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)) Fn 𝑈)
30 fvco3 6754 . . . . . . . . 9 (((𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩): 𝑈⟶(𝑋 × 𝑌) ∧ 𝑧 𝑈) → (((1st ↾ (𝑋 × 𝑌)) ∘ (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩))‘𝑧) = ((1st ↾ (𝑋 × 𝑌))‘((𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)‘𝑧)))
3124, 30sylan 582 . . . . . . . 8 (((𝐹: 𝑈𝑋𝐺: 𝑈𝑌) ∧ 𝑧 𝑈) → (((1st ↾ (𝑋 × 𝑌)) ∘ (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩))‘𝑧) = ((1st ↾ (𝑋 × 𝑌))‘((𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)‘𝑧)))
32 fveq2 6664 . . . . . . . . . . . 12 (𝑥 = 𝑧 → (𝐹𝑥) = (𝐹𝑧))
33 fveq2 6664 . . . . . . . . . . . 12 (𝑥 = 𝑧 → (𝐺𝑥) = (𝐺𝑧))
3432, 33opeq12d 4804 . . . . . . . . . . 11 (𝑥 = 𝑧 → ⟨(𝐹𝑥), (𝐺𝑥)⟩ = ⟨(𝐹𝑧), (𝐺𝑧)⟩)
35 opex 5348 . . . . . . . . . . 11 ⟨(𝐹𝑧), (𝐺𝑧)⟩ ∈ V
3634, 2, 35fvmpt 6762 . . . . . . . . . 10 (𝑧 𝑈 → ((𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)‘𝑧) = ⟨(𝐹𝑧), (𝐺𝑧)⟩)
3736adantl 484 . . . . . . . . 9 (((𝐹: 𝑈𝑋𝐺: 𝑈𝑌) ∧ 𝑧 𝑈) → ((𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)‘𝑧) = ⟨(𝐹𝑧), (𝐺𝑧)⟩)
3837fveq2d 6668 . . . . . . . 8 (((𝐹: 𝑈𝑋𝐺: 𝑈𝑌) ∧ 𝑧 𝑈) → ((1st ↾ (𝑋 × 𝑌))‘((𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)‘𝑧)) = ((1st ↾ (𝑋 × 𝑌))‘⟨(𝐹𝑧), (𝐺𝑧)⟩))
39 ffvelrn 6843 . . . . . . . . . . . 12 ((𝐹: 𝑈𝑋𝑧 𝑈) → (𝐹𝑧) ∈ 𝑋)
40 ffvelrn 6843 . . . . . . . . . . . 12 ((𝐺: 𝑈𝑌𝑧 𝑈) → (𝐺𝑧) ∈ 𝑌)
41 opelxpi 5586 . . . . . . . . . . . 12 (((𝐹𝑧) ∈ 𝑋 ∧ (𝐺𝑧) ∈ 𝑌) → ⟨(𝐹𝑧), (𝐺𝑧)⟩ ∈ (𝑋 × 𝑌))
4239, 40, 41syl2an 597 . . . . . . . . . . 11 (((𝐹: 𝑈𝑋𝑧 𝑈) ∧ (𝐺: 𝑈𝑌𝑧 𝑈)) → ⟨(𝐹𝑧), (𝐺𝑧)⟩ ∈ (𝑋 × 𝑌))
4342anandirs 677 . . . . . . . . . 10 (((𝐹: 𝑈𝑋𝐺: 𝑈𝑌) ∧ 𝑧 𝑈) → ⟨(𝐹𝑧), (𝐺𝑧)⟩ ∈ (𝑋 × 𝑌))
4443fvresd 6684 . . . . . . . . 9 (((𝐹: 𝑈𝑋𝐺: 𝑈𝑌) ∧ 𝑧 𝑈) → ((1st ↾ (𝑋 × 𝑌))‘⟨(𝐹𝑧), (𝐺𝑧)⟩) = (1st ‘⟨(𝐹𝑧), (𝐺𝑧)⟩))
45 fvex 6677 . . . . . . . . . 10 (𝐹𝑧) ∈ V
46 fvex 6677 . . . . . . . . . 10 (𝐺𝑧) ∈ V
4745, 46op1st 7691 . . . . . . . . 9 (1st ‘⟨(𝐹𝑧), (𝐺𝑧)⟩) = (𝐹𝑧)
4844, 47syl6eq 2872 . . . . . . . 8 (((𝐹: 𝑈𝑋𝐺: 𝑈𝑌) ∧ 𝑧 𝑈) → ((1st ↾ (𝑋 × 𝑌))‘⟨(𝐹𝑧), (𝐺𝑧)⟩) = (𝐹𝑧))
4931, 38, 483eqtrrd 2861 . . . . . . 7 (((𝐹: 𝑈𝑋𝐺: 𝑈𝑌) ∧ 𝑧 𝑈) → (𝐹𝑧) = (((1st ↾ (𝑋 × 𝑌)) ∘ (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩))‘𝑧))
5012, 29, 49eqfnfvd 6799 . . . . . 6 ((𝐹: 𝑈𝑋𝐺: 𝑈𝑌) → 𝐹 = ((1st ↾ (𝑋 × 𝑌)) ∘ (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)))
51 uptx.5 . . . . . . . 8 𝑃 = (1st𝑍)
52 uptx.4 . . . . . . . . 9 𝑍 = (𝑋 × 𝑌)
5352reseq2i 5844 . . . . . . . 8 (1st𝑍) = (1st ↾ (𝑋 × 𝑌))
5451, 53eqtri 2844 . . . . . . 7 𝑃 = (1st ↾ (𝑋 × 𝑌))
5554coeq1i 5724 . . . . . 6 (𝑃 ∘ (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)) = ((1st ↾ (𝑋 × 𝑌)) ∘ (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩))
5650, 55syl6eqr 2874 . . . . 5 ((𝐹: 𝑈𝑋𝐺: 𝑈𝑌) → 𝐹 = (𝑃 ∘ (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)))
578, 10, 56syl2an 597 . . . 4 ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → 𝐹 = (𝑃 ∘ (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)))
58 ffn 6508 . . . . . . . 8 (𝐺: 𝑈𝑌𝐺 Fn 𝑈)
5958adantl 484 . . . . . . 7 ((𝐹: 𝑈𝑋𝐺: 𝑈𝑌) → 𝐺 Fn 𝑈)
60 fo2nd 7704 . . . . . . . . . 10 2nd :V–onto→V
61 fofn 6586 . . . . . . . . . 10 (2nd :V–onto→V → 2nd Fn V)
6260, 61ax-mp 5 . . . . . . . . 9 2nd Fn V
63 fnssres 6464 . . . . . . . . 9 ((2nd Fn V ∧ (𝑋 × 𝑌) ⊆ V) → (2nd ↾ (𝑋 × 𝑌)) Fn (𝑋 × 𝑌))
6462, 16, 63mp2an 690 . . . . . . . 8 (2nd ↾ (𝑋 × 𝑌)) Fn (𝑋 × 𝑌)
65 fnco 6459 . . . . . . . 8 (((2nd ↾ (𝑋 × 𝑌)) Fn (𝑋 × 𝑌) ∧ (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩) Fn 𝑈 ∧ ran (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩) ⊆ (𝑋 × 𝑌)) → ((2nd ↾ (𝑋 × 𝑌)) ∘ (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)) Fn 𝑈)
6664, 26, 27, 65mp3an2i 1462 . . . . . . 7 ((𝐹: 𝑈𝑋𝐺: 𝑈𝑌) → ((2nd ↾ (𝑋 × 𝑌)) ∘ (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)) Fn 𝑈)
67 fvco3 6754 . . . . . . . . 9 (((𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩): 𝑈⟶(𝑋 × 𝑌) ∧ 𝑧 𝑈) → (((2nd ↾ (𝑋 × 𝑌)) ∘ (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩))‘𝑧) = ((2nd ↾ (𝑋 × 𝑌))‘((𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)‘𝑧)))
6824, 67sylan 582 . . . . . . . 8 (((𝐹: 𝑈𝑋𝐺: 𝑈𝑌) ∧ 𝑧 𝑈) → (((2nd ↾ (𝑋 × 𝑌)) ∘ (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩))‘𝑧) = ((2nd ↾ (𝑋 × 𝑌))‘((𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)‘𝑧)))
6937fveq2d 6668 . . . . . . . 8 (((𝐹: 𝑈𝑋𝐺: 𝑈𝑌) ∧ 𝑧 𝑈) → ((2nd ↾ (𝑋 × 𝑌))‘((𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)‘𝑧)) = ((2nd ↾ (𝑋 × 𝑌))‘⟨(𝐹𝑧), (𝐺𝑧)⟩))
7043fvresd 6684 . . . . . . . . 9 (((𝐹: 𝑈𝑋𝐺: 𝑈𝑌) ∧ 𝑧 𝑈) → ((2nd ↾ (𝑋 × 𝑌))‘⟨(𝐹𝑧), (𝐺𝑧)⟩) = (2nd ‘⟨(𝐹𝑧), (𝐺𝑧)⟩))
7145, 46op2nd 7692 . . . . . . . . 9 (2nd ‘⟨(𝐹𝑧), (𝐺𝑧)⟩) = (𝐺𝑧)
7270, 71syl6eq 2872 . . . . . . . 8 (((𝐹: 𝑈𝑋𝐺: 𝑈𝑌) ∧ 𝑧 𝑈) → ((2nd ↾ (𝑋 × 𝑌))‘⟨(𝐹𝑧), (𝐺𝑧)⟩) = (𝐺𝑧))
7368, 69, 723eqtrrd 2861 . . . . . . 7 (((𝐹: 𝑈𝑋𝐺: 𝑈𝑌) ∧ 𝑧 𝑈) → (𝐺𝑧) = (((2nd ↾ (𝑋 × 𝑌)) ∘ (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩))‘𝑧))
7459, 66, 73eqfnfvd 6799 . . . . . 6 ((𝐹: 𝑈𝑋𝐺: 𝑈𝑌) → 𝐺 = ((2nd ↾ (𝑋 × 𝑌)) ∘ (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)))
75 uptx.6 . . . . . . . 8 𝑄 = (2nd𝑍)
7652reseq2i 5844 . . . . . . . 8 (2nd𝑍) = (2nd ↾ (𝑋 × 𝑌))
7775, 76eqtri 2844 . . . . . . 7 𝑄 = (2nd ↾ (𝑋 × 𝑌))
7877coeq1i 5724 . . . . . 6 (𝑄 ∘ (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)) = ((2nd ↾ (𝑋 × 𝑌)) ∘ (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩))
7974, 78syl6eqr 2874 . . . . 5 ((𝐹: 𝑈𝑋𝐺: 𝑈𝑌) → 𝐺 = (𝑄 ∘ (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)))
808, 10, 79syl2an 597 . . . 4 ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → 𝐺 = (𝑄 ∘ (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)))
816, 57, 80jca32 518 . . 3 ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → ((𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩) ∈ (𝑈 Cn 𝑇) ∧ (𝐹 = (𝑃 ∘ (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)) ∧ 𝐺 = (𝑄 ∘ (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)))))
82 eleq1 2900 . . . . 5 ( = (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩) → ( ∈ (𝑈 Cn 𝑇) ↔ (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩) ∈ (𝑈 Cn 𝑇)))
83 coeq2 5723 . . . . . . 7 ( = (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩) → (𝑃) = (𝑃 ∘ (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)))
8483eqeq2d 2832 . . . . . 6 ( = (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩) → (𝐹 = (𝑃) ↔ 𝐹 = (𝑃 ∘ (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩))))
85 coeq2 5723 . . . . . . 7 ( = (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩) → (𝑄) = (𝑄 ∘ (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)))
8685eqeq2d 2832 . . . . . 6 ( = (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩) → (𝐺 = (𝑄) ↔ 𝐺 = (𝑄 ∘ (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩))))
8784, 86anbi12d 632 . . . . 5 ( = (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩) → ((𝐹 = (𝑃) ∧ 𝐺 = (𝑄)) ↔ (𝐹 = (𝑃 ∘ (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)) ∧ 𝐺 = (𝑄 ∘ (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)))))
8882, 87anbi12d 632 . . . 4 ( = (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩) → (( ∈ (𝑈 Cn 𝑇) ∧ (𝐹 = (𝑃) ∧ 𝐺 = (𝑄))) ↔ ((𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩) ∈ (𝑈 Cn 𝑇) ∧ (𝐹 = (𝑃 ∘ (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)) ∧ 𝐺 = (𝑄 ∘ (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩))))))
8988spcegv 3596 . . 3 ((𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩) ∈ (𝑈 Cn 𝑇) → (((𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩) ∈ (𝑈 Cn 𝑇) ∧ (𝐹 = (𝑃 ∘ (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)) ∧ 𝐺 = (𝑄 ∘ (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)))) → ∃( ∈ (𝑈 Cn 𝑇) ∧ (𝐹 = (𝑃) ∧ 𝐺 = (𝑄)))))
906, 81, 89sylc 65 . 2 ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → ∃( ∈ (𝑈 Cn 𝑇) ∧ (𝐹 = (𝑃) ∧ 𝐺 = (𝑄))))
91 eqid 2821 . . . . . . . 8 𝑇 = 𝑇
921, 91cnf 21848 . . . . . . 7 ( ∈ (𝑈 Cn 𝑇) → : 𝑈 𝑇)
93 cntop2 21843 . . . . . . . . 9 (𝐹 ∈ (𝑈 Cn 𝑅) → 𝑅 ∈ Top)
94 cntop2 21843 . . . . . . . . 9 (𝐺 ∈ (𝑈 Cn 𝑆) → 𝑆 ∈ Top)
957, 9txuni 22194 . . . . . . . . . 10 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑋 × 𝑌) = (𝑅 ×t 𝑆))
964unieqi 4840 . . . . . . . . . 10 𝑇 = (𝑅 ×t 𝑆)
9795, 96syl6reqr 2875 . . . . . . . . 9 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → 𝑇 = (𝑋 × 𝑌))
9893, 94, 97syl2an 597 . . . . . . . 8 ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → 𝑇 = (𝑋 × 𝑌))
9998feq3d 6495 . . . . . . 7 ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → (: 𝑈 𝑇: 𝑈⟶(𝑋 × 𝑌)))
10092, 99syl5ib 246 . . . . . 6 ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → ( ∈ (𝑈 Cn 𝑇) → : 𝑈⟶(𝑋 × 𝑌)))
101100anim1d 612 . . . . 5 ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → (( ∈ (𝑈 Cn 𝑇) ∧ (𝐹 = (𝑃) ∧ 𝐺 = (𝑄))) → (: 𝑈⟶(𝑋 × 𝑌) ∧ (𝐹 = (𝑃) ∧ 𝐺 = (𝑄)))))
102 3anass 1091 . . . . 5 ((: 𝑈⟶(𝑋 × 𝑌) ∧ 𝐹 = (𝑃) ∧ 𝐺 = (𝑄)) ↔ (: 𝑈⟶(𝑋 × 𝑌) ∧ (𝐹 = (𝑃) ∧ 𝐺 = (𝑄))))
103101, 102syl6ibr 254 . . . 4 ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → (( ∈ (𝑈 Cn 𝑇) ∧ (𝐹 = (𝑃) ∧ 𝐺 = (𝑄))) → (: 𝑈⟶(𝑋 × 𝑌) ∧ 𝐹 = (𝑃) ∧ 𝐺 = (𝑄))))
104103alrimiv 1924 . . 3 ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → ∀(( ∈ (𝑈 Cn 𝑇) ∧ (𝐹 = (𝑃) ∧ 𝐺 = (𝑄))) → (: 𝑈⟶(𝑋 × 𝑌) ∧ 𝐹 = (𝑃) ∧ 𝐺 = (𝑄))))
105 cntop1 21842 . . . . . 6 (𝐹 ∈ (𝑈 Cn 𝑅) → 𝑈 ∈ Top)
106105uniexd 7462 . . . . 5 (𝐹 ∈ (𝑈 Cn 𝑅) → 𝑈 ∈ V)
10754, 77upxp 22225 . . . . 5 (( 𝑈 ∈ V ∧ 𝐹: 𝑈𝑋𝐺: 𝑈𝑌) → ∃!(: 𝑈⟶(𝑋 × 𝑌) ∧ 𝐹 = (𝑃) ∧ 𝐺 = (𝑄)))
108106, 8, 10, 107syl2an3an 1418 . . . 4 ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → ∃!(: 𝑈⟶(𝑋 × 𝑌) ∧ 𝐹 = (𝑃) ∧ 𝐺 = (𝑄)))
109 eumo 2659 . . . 4 (∃!(: 𝑈⟶(𝑋 × 𝑌) ∧ 𝐹 = (𝑃) ∧ 𝐺 = (𝑄)) → ∃*(: 𝑈⟶(𝑋 × 𝑌) ∧ 𝐹 = (𝑃) ∧ 𝐺 = (𝑄)))
110108, 109syl 17 . . 3 ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → ∃*(: 𝑈⟶(𝑋 × 𝑌) ∧ 𝐹 = (𝑃) ∧ 𝐺 = (𝑄)))
111 moim 2622 . . 3 (∀(( ∈ (𝑈 Cn 𝑇) ∧ (𝐹 = (𝑃) ∧ 𝐺 = (𝑄))) → (: 𝑈⟶(𝑋 × 𝑌) ∧ 𝐹 = (𝑃) ∧ 𝐺 = (𝑄))) → (∃*(: 𝑈⟶(𝑋 × 𝑌) ∧ 𝐹 = (𝑃) ∧ 𝐺 = (𝑄)) → ∃*( ∈ (𝑈 Cn 𝑇) ∧ (𝐹 = (𝑃) ∧ 𝐺 = (𝑄)))))
112104, 110, 111sylc 65 . 2 ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → ∃*( ∈ (𝑈 Cn 𝑇) ∧ (𝐹 = (𝑃) ∧ 𝐺 = (𝑄))))
113 df-reu 3145 . . 3 (∃! ∈ (𝑈 Cn 𝑇)(𝐹 = (𝑃) ∧ 𝐺 = (𝑄)) ↔ ∃!( ∈ (𝑈 Cn 𝑇) ∧ (𝐹 = (𝑃) ∧ 𝐺 = (𝑄))))
114 df-eu 2650 . . 3 (∃!( ∈ (𝑈 Cn 𝑇) ∧ (𝐹 = (𝑃) ∧ 𝐺 = (𝑄))) ↔ (∃( ∈ (𝑈 Cn 𝑇) ∧ (𝐹 = (𝑃) ∧ 𝐺 = (𝑄))) ∧ ∃*( ∈ (𝑈 Cn 𝑇) ∧ (𝐹 = (𝑃) ∧ 𝐺 = (𝑄)))))
115113, 114bitri 277 . 2 (∃! ∈ (𝑈 Cn 𝑇)(𝐹 = (𝑃) ∧ 𝐺 = (𝑄)) ↔ (∃( ∈ (𝑈 Cn 𝑇) ∧ (𝐹 = (𝑃) ∧ 𝐺 = (𝑄))) ∧ ∃*( ∈ (𝑈 Cn 𝑇) ∧ (𝐹 = (𝑃) ∧ 𝐺 = (𝑄)))))
11690, 112, 115sylanbrc 585 1 ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → ∃! ∈ (𝑈 Cn 𝑇)(𝐹 = (𝑃) ∧ 𝐺 = (𝑄)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083  wal 1531   = wceq 1533  wex 1776  wcel 2110  ∃*wmo 2616  ∃!weu 2649  ∃!wreu 3140  Vcvv 3494  wss 3935  cop 4566   cuni 4831  cmpt 5138   × cxp 5547  ran crn 5550  cres 5551  ccom 5553   Fn wfn 6344  wf 6345  ontowfo 6347  cfv 6349  (class class class)co 7150  1st c1st 7681  2nd c2nd 7682  Topctop 21495   Cn ccn 21826   ×t ctx 22162
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-ov 7153  df-oprab 7154  df-mpo 7155  df-1st 7683  df-2nd 7684  df-map 8402  df-topgen 16711  df-top 21496  df-topon 21513  df-bases 21548  df-cn 21829  df-tx 22164
This theorem is referenced by:  txcn  22228
  Copyright terms: Public domain W3C validator