Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  upwlkbprop Structured version   Visualization version   GIF version

Theorem upwlkbprop 42044
Description: Basic properties of a simple walk. (Contributed by Alexander van der Vekens, 31-Oct-2017.) (Revised by AV, 29-Dec-2020.)
Hypotheses
Ref Expression
upwlksfval.v 𝑉 = (Vtx‘𝐺)
upwlksfval.i 𝐼 = (iEdg‘𝐺)
Assertion
Ref Expression
upwlkbprop (𝐹(UPWalks‘𝐺)𝑃 → (𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V))

Proof of Theorem upwlkbprop
Dummy variables 𝑓 𝑘 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 upwlksfval.v . . . . . . . 8 𝑉 = (Vtx‘𝐺)
2 upwlksfval.i . . . . . . . 8 𝐼 = (iEdg‘𝐺)
31, 2upwlksfval 42041 . . . . . . 7 (𝐺 ∈ V → (UPWalks‘𝐺) = {⟨𝑓, 𝑝⟩ ∣ (𝑓 ∈ Word dom 𝐼𝑝:(0...(#‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝑓))(𝐼‘(𝑓𝑘)) = {(𝑝𝑘), (𝑝‘(𝑘 + 1))})})
43breqd 4696 . . . . . 6 (𝐺 ∈ V → (𝐹(UPWalks‘𝐺)𝑃𝐹{⟨𝑓, 𝑝⟩ ∣ (𝑓 ∈ Word dom 𝐼𝑝:(0...(#‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝑓))(𝐼‘(𝑓𝑘)) = {(𝑝𝑘), (𝑝‘(𝑘 + 1))})}𝑃))
5 brabv 6741 . . . . . 6 (𝐹{⟨𝑓, 𝑝⟩ ∣ (𝑓 ∈ Word dom 𝐼𝑝:(0...(#‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝑓))(𝐼‘(𝑓𝑘)) = {(𝑝𝑘), (𝑝‘(𝑘 + 1))})}𝑃 → (𝐹 ∈ V ∧ 𝑃 ∈ V))
64, 5syl6bi 243 . . . . 5 (𝐺 ∈ V → (𝐹(UPWalks‘𝐺)𝑃 → (𝐹 ∈ V ∧ 𝑃 ∈ V)))
76imdistani 726 . . . 4 ((𝐺 ∈ V ∧ 𝐹(UPWalks‘𝐺)𝑃) → (𝐺 ∈ V ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)))
8 3anass 1059 . . . 4 ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) ↔ (𝐺 ∈ V ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)))
97, 8sylibr 224 . . 3 ((𝐺 ∈ V ∧ 𝐹(UPWalks‘𝐺)𝑃) → (𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V))
109ex 449 . 2 (𝐺 ∈ V → (𝐹(UPWalks‘𝐺)𝑃 → (𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V)))
11 fvprc 6223 . . 3 𝐺 ∈ V → (UPWalks‘𝐺) = ∅)
12 breq 4687 . . . 4 ((UPWalks‘𝐺) = ∅ → (𝐹(UPWalks‘𝐺)𝑃𝐹𝑃))
13 br0 4734 . . . . 5 ¬ 𝐹𝑃
1413pm2.21i 116 . . . 4 (𝐹𝑃 → (𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V))
1512, 14syl6bi 243 . . 3 ((UPWalks‘𝐺) = ∅ → (𝐹(UPWalks‘𝐺)𝑃 → (𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V)))
1611, 15syl 17 . 2 𝐺 ∈ V → (𝐹(UPWalks‘𝐺)𝑃 → (𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V)))
1710, 16pm2.61i 176 1 (𝐹(UPWalks‘𝐺)𝑃 → (𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383  w3a 1054   = wceq 1523  wcel 2030  wral 2941  Vcvv 3231  c0 3948  {cpr 4212   class class class wbr 4685  {copab 4745  dom cdm 5143  wf 5922  cfv 5926  (class class class)co 6690  0cc0 9974  1c1 9975   + caddc 9977  ...cfz 12364  ..^cfzo 12504  #chash 13157  Word cword 13323  Vtxcvtx 25919  iEdgciedg 25920  UPWalkscupwlks 42039
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-er 7787  df-map 7901  df-pm 7902  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-card 8803  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-n0 11331  df-z 11416  df-uz 11726  df-fz 12365  df-fzo 12505  df-hash 13158  df-word 13331  df-upwlks 42040
This theorem is referenced by:  upwlkwlk  42045
  Copyright terms: Public domain W3C validator