MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  usgr0 Structured version   Visualization version   GIF version

Theorem usgr0 27017
Description: The null graph represented by an empty set is a simple graph. (Contributed by AV, 16-Oct-2020.)
Assertion
Ref Expression
usgr0 ∅ ∈ USGraph

Proof of Theorem usgr0
StepHypRef Expression
1 f10 6640 . . 3 ∅:∅–1-1→{𝑥 ∈ (𝒫 ∅ ∖ {∅}) ∣ (♯‘𝑥) = 2}
2 dm0 5783 . . . 4 dom ∅ = ∅
3 f1eq2 6564 . . . 4 (dom ∅ = ∅ → (∅:dom ∅–1-1→{𝑥 ∈ (𝒫 ∅ ∖ {∅}) ∣ (♯‘𝑥) = 2} ↔ ∅:∅–1-1→{𝑥 ∈ (𝒫 ∅ ∖ {∅}) ∣ (♯‘𝑥) = 2}))
42, 3ax-mp 5 . . 3 (∅:dom ∅–1-1→{𝑥 ∈ (𝒫 ∅ ∖ {∅}) ∣ (♯‘𝑥) = 2} ↔ ∅:∅–1-1→{𝑥 ∈ (𝒫 ∅ ∖ {∅}) ∣ (♯‘𝑥) = 2})
51, 4mpbir 233 . 2 ∅:dom ∅–1-1→{𝑥 ∈ (𝒫 ∅ ∖ {∅}) ∣ (♯‘𝑥) = 2}
6 0ex 5202 . . 3 ∅ ∈ V
7 vtxval0 26816 . . . . 5 (Vtx‘∅) = ∅
87eqcomi 2828 . . . 4 ∅ = (Vtx‘∅)
9 iedgval0 26817 . . . . 5 (iEdg‘∅) = ∅
109eqcomi 2828 . . . 4 ∅ = (iEdg‘∅)
118, 10isusgr 26930 . . 3 (∅ ∈ V → (∅ ∈ USGraph ↔ ∅:dom ∅–1-1→{𝑥 ∈ (𝒫 ∅ ∖ {∅}) ∣ (♯‘𝑥) = 2}))
126, 11ax-mp 5 . 2 (∅ ∈ USGraph ↔ ∅:dom ∅–1-1→{𝑥 ∈ (𝒫 ∅ ∖ {∅}) ∣ (♯‘𝑥) = 2})
135, 12mpbir 233 1 ∅ ∈ USGraph
Colors of variables: wff setvar class
Syntax hints:  wb 208   = wceq 1531  wcel 2108  {crab 3140  Vcvv 3493  cdif 3931  c0 4289  𝒫 cpw 4537  {csn 4559  dom cdm 5548  1-1wf1 6345  cfv 6348  2c2 11684  chash 13682  Vtxcvtx 26773  iEdgciedg 26774  USGraphcusgr 26926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-ral 3141  df-rex 3142  df-rab 3145  df-v 3495  df-sbc 3771  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4831  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fv 6356  df-slot 16479  df-base 16481  df-edgf 26767  df-vtx 26775  df-iedg 26776  df-usgr 26928
This theorem is referenced by:  cusgr0  27200  frgr0  28036
  Copyright terms: Public domain W3C validator