MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  usgr0e Structured version   Visualization version   GIF version

Theorem usgr0e 26348
Description: The empty graph, with vertices but no edges, is a simple graph. (Contributed by Alexander van der Vekens, 10-Aug-2017.) (Revised by AV, 16-Oct-2020.) (Proof shortened by AV, 25-Nov-2020.)
Hypotheses
Ref Expression
usgr0e.g (𝜑𝐺𝑊)
usgr0e.e (𝜑 → (iEdg‘𝐺) = ∅)
Assertion
Ref Expression
usgr0e (𝜑𝐺 ∈ USGraph)

Proof of Theorem usgr0e
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 usgr0e.e . . 3 (𝜑 → (iEdg‘𝐺) = ∅)
21f10d 6332 . 2 (𝜑 → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2})
3 usgr0e.g . . 3 (𝜑𝐺𝑊)
4 eqid 2760 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
5 eqid 2760 . . . 4 (iEdg‘𝐺) = (iEdg‘𝐺)
64, 5isusgr 26268 . . 3 (𝐺𝑊 → (𝐺 ∈ USGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2}))
73, 6syl 17 . 2 (𝜑 → (𝐺 ∈ USGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2}))
82, 7mpbird 247 1 (𝜑𝐺 ∈ USGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196   = wceq 1632  wcel 2139  {crab 3054  cdif 3712  c0 4058  𝒫 cpw 4302  {csn 4321  dom cdm 5266  1-1wf1 6046  cfv 6049  2c2 11282  chash 13331  Vtxcvtx 26094  iEdgciedg 26095  USGraphcusgr 26264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pr 5055
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ral 3055  df-rex 3056  df-rab 3059  df-v 3342  df-sbc 3577  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-br 4805  df-opab 4865  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fv 6057  df-usgr 26266
This theorem is referenced by:  usgr0vb  26349  uhgr0vusgr  26354  usgr0eop  26358  edg0usgr  26365  usgr1v  26368  griedg0ssusgr  26377  cusgr1v  26558  frgr0v  27436
  Copyright terms: Public domain W3C validator