Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  usgr2pth0 Structured version   Visualization version   GIF version

Theorem usgr2pth0 40973
Description: In a simply graph, there is a path of length 2 iff there are three distinct vertices so that one of them is connected to each of the two others by an edge. (Contributed by Alexander van der Vekens, 27-Jan-2018.) (Revised by AV, 5-Jun-2021.)
Hypotheses
Ref Expression
usgr2pthlem.v 𝑉 = (Vtx‘𝐺)
usgr2pthlem.i 𝐼 = (iEdg‘𝐺)
Assertion
Ref Expression
usgr2pth0 (𝐺 ∈ USGraph → ((𝐹(PathS‘𝐺)𝑃 ∧ (#‘𝐹) = 2) ↔ (𝐹:(0..^2)–1-1→dom 𝐼𝑃:(0...2)–1-1𝑉 ∧ ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦})))))
Distinct variable groups:   𝑥,𝐹,𝑦,𝑧   𝑥,𝐺,𝑦,𝑧   𝑥,𝐼,𝑦,𝑧   𝑥,𝑃,𝑦,𝑧   𝑥,𝑉,𝑦,𝑧

Proof of Theorem usgr2pth0
StepHypRef Expression
1 usgr2pthlem.v . . 3 𝑉 = (Vtx‘𝐺)
2 usgr2pthlem.i . . 3 𝐼 = (iEdg‘𝐺)
31, 2usgr2pth 40972 . 2 (𝐺 ∈ USGraph → ((𝐹(PathS‘𝐺)𝑃 ∧ (#‘𝐹) = 2) ↔ (𝐹:(0..^2)–1-1→dom 𝐼𝑃:(0...2)–1-1𝑉 ∧ ∃𝑥𝑉𝑧 ∈ (𝑉 ∖ {𝑥})∃𝑦 ∈ (𝑉 ∖ {𝑥, 𝑧})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦})))))
4 r19.42v 3072 . . . . . . . . 9 (∃𝑦 ∈ (𝑉 ∖ {𝑥, 𝑧})(𝑧𝑥 ∧ (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦}))) ↔ (𝑧𝑥 ∧ ∃𝑦 ∈ (𝑉 ∖ {𝑥, 𝑧})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦}))))
5 rexdifpr 40121 . . . . . . . . 9 (∃𝑦 ∈ (𝑉 ∖ {𝑥, 𝑧})(𝑧𝑥 ∧ (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦}))) ↔ ∃𝑦𝑉 (𝑦𝑥𝑦𝑧 ∧ (𝑧𝑥 ∧ (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦})))))
64, 5bitr3i 264 . . . . . . . 8 ((𝑧𝑥 ∧ ∃𝑦 ∈ (𝑉 ∖ {𝑥, 𝑧})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦}))) ↔ ∃𝑦𝑉 (𝑦𝑥𝑦𝑧 ∧ (𝑧𝑥 ∧ (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦})))))
76rexbii 3022 . . . . . . 7 (∃𝑧𝑉 (𝑧𝑥 ∧ ∃𝑦 ∈ (𝑉 ∖ {𝑥, 𝑧})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦}))) ↔ ∃𝑧𝑉𝑦𝑉 (𝑦𝑥𝑦𝑧 ∧ (𝑧𝑥 ∧ (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦})))))
8 rexcom 3079 . . . . . . 7 (∃𝑧𝑉𝑦𝑉 (𝑦𝑥𝑦𝑧 ∧ (𝑧𝑥 ∧ (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦})))) ↔ ∃𝑦𝑉𝑧𝑉 (𝑦𝑥𝑦𝑧 ∧ (𝑧𝑥 ∧ (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦})))))
9 df-3an 1032 . . . . . . . . . . 11 ((𝑦𝑥𝑦𝑧 ∧ (𝑧𝑥 ∧ (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦})))) ↔ ((𝑦𝑥𝑦𝑧) ∧ (𝑧𝑥 ∧ (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦})))))
10 anass 678 . . . . . . . . . . 11 ((((𝑦𝑥𝑦𝑧) ∧ 𝑧𝑥) ∧ (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦}))) ↔ ((𝑦𝑥𝑦𝑧) ∧ (𝑧𝑥 ∧ (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦})))))
11 anass 678 . . . . . . . . . . . 12 ((((𝑧𝑥𝑧𝑦) ∧ 𝑦𝑥) ∧ (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦}))) ↔ ((𝑧𝑥𝑧𝑦) ∧ (𝑦𝑥 ∧ (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦})))))
12 anass 678 . . . . . . . . . . . . . 14 (((𝑦𝑥𝑦𝑧) ∧ 𝑧𝑥) ↔ (𝑦𝑥 ∧ (𝑦𝑧𝑧𝑥)))
13 ancom 464 . . . . . . . . . . . . . 14 ((𝑦𝑥 ∧ (𝑦𝑧𝑧𝑥)) ↔ ((𝑦𝑧𝑧𝑥) ∧ 𝑦𝑥))
14 necom 2834 . . . . . . . . . . . . . . . 16 (𝑦𝑧𝑧𝑦)
1514anbi2ci 727 . . . . . . . . . . . . . . 15 ((𝑦𝑧𝑧𝑥) ↔ (𝑧𝑥𝑧𝑦))
1615anbi1i 726 . . . . . . . . . . . . . 14 (((𝑦𝑧𝑧𝑥) ∧ 𝑦𝑥) ↔ ((𝑧𝑥𝑧𝑦) ∧ 𝑦𝑥))
1712, 13, 163bitri 284 . . . . . . . . . . . . 13 (((𝑦𝑥𝑦𝑧) ∧ 𝑧𝑥) ↔ ((𝑧𝑥𝑧𝑦) ∧ 𝑦𝑥))
1817anbi1i 726 . . . . . . . . . . . 12 ((((𝑦𝑥𝑦𝑧) ∧ 𝑧𝑥) ∧ (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦}))) ↔ (((𝑧𝑥𝑧𝑦) ∧ 𝑦𝑥) ∧ (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦}))))
19 df-3an 1032 . . . . . . . . . . . 12 ((𝑧𝑥𝑧𝑦 ∧ (𝑦𝑥 ∧ (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦})))) ↔ ((𝑧𝑥𝑧𝑦) ∧ (𝑦𝑥 ∧ (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦})))))
2011, 18, 193bitr4i 290 . . . . . . . . . . 11 ((((𝑦𝑥𝑦𝑧) ∧ 𝑧𝑥) ∧ (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦}))) ↔ (𝑧𝑥𝑧𝑦 ∧ (𝑦𝑥 ∧ (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦})))))
219, 10, 203bitr2i 286 . . . . . . . . . 10 ((𝑦𝑥𝑦𝑧 ∧ (𝑧𝑥 ∧ (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦})))) ↔ (𝑧𝑥𝑧𝑦 ∧ (𝑦𝑥 ∧ (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦})))))
2221rexbii 3022 . . . . . . . . 9 (∃𝑧𝑉 (𝑦𝑥𝑦𝑧 ∧ (𝑧𝑥 ∧ (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦})))) ↔ ∃𝑧𝑉 (𝑧𝑥𝑧𝑦 ∧ (𝑦𝑥 ∧ (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦})))))
23 rexdifpr 40121 . . . . . . . . 9 (∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(𝑦𝑥 ∧ (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦}))) ↔ ∃𝑧𝑉 (𝑧𝑥𝑧𝑦 ∧ (𝑦𝑥 ∧ (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦})))))
24 r19.42v 3072 . . . . . . . . 9 (∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(𝑦𝑥 ∧ (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦}))) ↔ (𝑦𝑥 ∧ ∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦}))))
2522, 23, 243bitr2i 286 . . . . . . . 8 (∃𝑧𝑉 (𝑦𝑥𝑦𝑧 ∧ (𝑧𝑥 ∧ (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦})))) ↔ (𝑦𝑥 ∧ ∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦}))))
2625rexbii 3022 . . . . . . 7 (∃𝑦𝑉𝑧𝑉 (𝑦𝑥𝑦𝑧 ∧ (𝑧𝑥 ∧ (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦})))) ↔ ∃𝑦𝑉 (𝑦𝑥 ∧ ∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦}))))
277, 8, 263bitri 284 . . . . . 6 (∃𝑧𝑉 (𝑧𝑥 ∧ ∃𝑦 ∈ (𝑉 ∖ {𝑥, 𝑧})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦}))) ↔ ∃𝑦𝑉 (𝑦𝑥 ∧ ∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦}))))
28 rexdifsn 4263 . . . . . 6 (∃𝑧 ∈ (𝑉 ∖ {𝑥})∃𝑦 ∈ (𝑉 ∖ {𝑥, 𝑧})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦})) ↔ ∃𝑧𝑉 (𝑧𝑥 ∧ ∃𝑦 ∈ (𝑉 ∖ {𝑥, 𝑧})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦}))))
29 rexdifsn 4263 . . . . . 6 (∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦})) ↔ ∃𝑦𝑉 (𝑦𝑥 ∧ ∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦}))))
3027, 28, 293bitr4i 290 . . . . 5 (∃𝑧 ∈ (𝑉 ∖ {𝑥})∃𝑦 ∈ (𝑉 ∖ {𝑥, 𝑧})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦})) ↔ ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦})))
3130a1i 11 . . . 4 ((𝐺 ∈ USGraph ∧ 𝑥𝑉) → (∃𝑧 ∈ (𝑉 ∖ {𝑥})∃𝑦 ∈ (𝑉 ∖ {𝑥, 𝑧})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦})) ↔ ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦}))))
3231rexbidva 3030 . . 3 (𝐺 ∈ USGraph → (∃𝑥𝑉𝑧 ∈ (𝑉 ∖ {𝑥})∃𝑦 ∈ (𝑉 ∖ {𝑥, 𝑧})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦})) ↔ ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦}))))
33323anbi3d 1396 . 2 (𝐺 ∈ USGraph → ((𝐹:(0..^2)–1-1→dom 𝐼𝑃:(0...2)–1-1𝑉 ∧ ∃𝑥𝑉𝑧 ∈ (𝑉 ∖ {𝑥})∃𝑦 ∈ (𝑉 ∖ {𝑥, 𝑧})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦}))) ↔ (𝐹:(0..^2)–1-1→dom 𝐼𝑃:(0...2)–1-1𝑉 ∧ ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦})))))
343, 33bitrd 266 1 (𝐺 ∈ USGraph → ((𝐹(PathS‘𝐺)𝑃 ∧ (#‘𝐹) = 2) ↔ (𝐹:(0..^2)–1-1→dom 𝐼𝑃:(0...2)–1-1𝑉 ∧ ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦})))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wa 382  w3a 1030   = wceq 1474  wcel 1976  wne 2779  wrex 2896  cdif 3536  {csn 4124  {cpr 4126   class class class wbr 4577  dom cdm 5028  1-1wf1 5787  cfv 5790  (class class class)co 6527  0cc0 9792  1c1 9793  2c2 10917  ...cfz 12152  ..^cfzo 12289  #chash 12934  Vtxcvtx 40231  iEdgciedg 40232   USGraph cusgr 40381  PathScpths 40921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2232  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-ifp 1006  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-int 4405  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-om 6935  df-1st 7036  df-2nd 7037  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-1o 7424  df-2o 7425  df-oadd 7428  df-er 7606  df-map 7723  df-pm 7724  df-en 7819  df-dom 7820  df-sdom 7821  df-fin 7822  df-card 8625  df-cda 8850  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-nn 10868  df-2 10926  df-3 10927  df-n0 11140  df-z 11211  df-uz 11520  df-fz 12153  df-fzo 12290  df-hash 12935  df-word 13100  df-concat 13102  df-s1 13103  df-s2 13390  df-s3 13391  df-uhgr 40282  df-upgr 40310  df-umgr 40311  df-edga 40354  df-uspgr 40382  df-usgr 40383  df-1wlks 40802  df-wlks 40803  df-wlkson 40804  df-trls 40903  df-trlson 40904  df-pths 40925  df-spths 40926  df-pthson 40927  df-spthson 40928
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator