MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  usgr2trlncl Structured version   Visualization version   GIF version

Theorem usgr2trlncl 27535
Description: In a simple graph, any trail of length 2 does not start and end at the same vertex. (Contributed by AV, 5-Jun-2021.) (Proof shortened by AV, 31-Oct-2021.)
Assertion
Ref Expression
usgr2trlncl ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) → (𝐹(Trails‘𝐺)𝑃 → (𝑃‘0) ≠ (𝑃‘2)))

Proof of Theorem usgr2trlncl
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 usgrupgr 26961 . . . . 5 (𝐺 ∈ USGraph → 𝐺 ∈ UPGraph)
2 eqid 2821 . . . . . 6 (Vtx‘𝐺) = (Vtx‘𝐺)
3 eqid 2821 . . . . . 6 (iEdg‘𝐺) = (iEdg‘𝐺)
42, 3upgrf1istrl 27479 . . . . 5 (𝐺 ∈ UPGraph → (𝐹(Trails‘𝐺)𝑃 ↔ (𝐹:(0..^(♯‘𝐹))–1-1→dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})))
51, 4syl 17 . . . 4 (𝐺 ∈ USGraph → (𝐹(Trails‘𝐺)𝑃 ↔ (𝐹:(0..^(♯‘𝐹))–1-1→dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})))
6 eqidd 2822 . . . . . . . . . . . 12 ((♯‘𝐹) = 2 → 𝐹 = 𝐹)
7 oveq2 7158 . . . . . . . . . . . . 13 ((♯‘𝐹) = 2 → (0..^(♯‘𝐹)) = (0..^2))
8 fzo0to2pr 13116 . . . . . . . . . . . . 13 (0..^2) = {0, 1}
97, 8syl6eq 2872 . . . . . . . . . . . 12 ((♯‘𝐹) = 2 → (0..^(♯‘𝐹)) = {0, 1})
10 eqidd 2822 . . . . . . . . . . . 12 ((♯‘𝐹) = 2 → dom (iEdg‘𝐺) = dom (iEdg‘𝐺))
116, 9, 10f1eq123d 6602 . . . . . . . . . . 11 ((♯‘𝐹) = 2 → (𝐹:(0..^(♯‘𝐹))–1-1→dom (iEdg‘𝐺) ↔ 𝐹:{0, 1}–1-1→dom (iEdg‘𝐺)))
129raleqdv 3415 . . . . . . . . . . . 12 ((♯‘𝐹) = 2 → (∀𝑖 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ↔ ∀𝑖 ∈ {0, 1} ((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}))
13 2wlklem 27443 . . . . . . . . . . . 12 (∀𝑖 ∈ {0, 1} ((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ↔ (((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))
1412, 13syl6bb 289 . . . . . . . . . . 11 ((♯‘𝐹) = 2 → (∀𝑖 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ↔ (((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})))
1511, 14anbi12d 632 . . . . . . . . . 10 ((♯‘𝐹) = 2 → ((𝐹:(0..^(♯‘𝐹))–1-1→dom (iEdg‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) ↔ (𝐹:{0, 1}–1-1→dom (iEdg‘𝐺) ∧ (((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))))
1615adantl 484 . . . . . . . . 9 ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) → ((𝐹:(0..^(♯‘𝐹))–1-1→dom (iEdg‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) ↔ (𝐹:{0, 1}–1-1→dom (iEdg‘𝐺) ∧ (((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))))
17 c0ex 10629 . . . . . . . . . . . . . 14 0 ∈ V
18 1ex 10631 . . . . . . . . . . . . . 14 1 ∈ V
1917, 18pm3.2i 473 . . . . . . . . . . . . 13 (0 ∈ V ∧ 1 ∈ V)
20 0ne1 11702 . . . . . . . . . . . . 13 0 ≠ 1
21 eqid 2821 . . . . . . . . . . . . . 14 {0, 1} = {0, 1}
2221f12dfv 7024 . . . . . . . . . . . . 13 (((0 ∈ V ∧ 1 ∈ V) ∧ 0 ≠ 1) → (𝐹:{0, 1}–1-1→dom (iEdg‘𝐺) ↔ (𝐹:{0, 1}⟶dom (iEdg‘𝐺) ∧ (𝐹‘0) ≠ (𝐹‘1))))
2319, 20, 22mp2an 690 . . . . . . . . . . . 12 (𝐹:{0, 1}–1-1→dom (iEdg‘𝐺) ↔ (𝐹:{0, 1}⟶dom (iEdg‘𝐺) ∧ (𝐹‘0) ≠ (𝐹‘1)))
24 eqid 2821 . . . . . . . . . . . . . 14 (Edg‘𝐺) = (Edg‘𝐺)
253, 24usgrf1oedg 26983 . . . . . . . . . . . . 13 (𝐺 ∈ USGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1-onto→(Edg‘𝐺))
26 f1of1 6608 . . . . . . . . . . . . . 14 ((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1-onto→(Edg‘𝐺) → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→(Edg‘𝐺))
27 id 22 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐹:{0, 1}⟶dom (iEdg‘𝐺) → 𝐹:{0, 1}⟶dom (iEdg‘𝐺))
2817prid1 4691 . . . . . . . . . . . . . . . . . . . . . . . 24 0 ∈ {0, 1}
2928a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐹:{0, 1}⟶dom (iEdg‘𝐺) → 0 ∈ {0, 1})
3027, 29ffvelrnd 6846 . . . . . . . . . . . . . . . . . . . . . 22 (𝐹:{0, 1}⟶dom (iEdg‘𝐺) → (𝐹‘0) ∈ dom (iEdg‘𝐺))
3118prid2 4692 . . . . . . . . . . . . . . . . . . . . . . . 24 1 ∈ {0, 1}
3231a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐹:{0, 1}⟶dom (iEdg‘𝐺) → 1 ∈ {0, 1})
3327, 32ffvelrnd 6846 . . . . . . . . . . . . . . . . . . . . . 22 (𝐹:{0, 1}⟶dom (iEdg‘𝐺) → (𝐹‘1) ∈ dom (iEdg‘𝐺))
3430, 33jca 514 . . . . . . . . . . . . . . . . . . . . 21 (𝐹:{0, 1}⟶dom (iEdg‘𝐺) → ((𝐹‘0) ∈ dom (iEdg‘𝐺) ∧ (𝐹‘1) ∈ dom (iEdg‘𝐺)))
3534anim1ci 617 . . . . . . . . . . . . . . . . . . . 20 ((𝐹:{0, 1}⟶dom (iEdg‘𝐺) ∧ (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→(Edg‘𝐺)) → ((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→(Edg‘𝐺) ∧ ((𝐹‘0) ∈ dom (iEdg‘𝐺) ∧ (𝐹‘1) ∈ dom (iEdg‘𝐺))))
36 f1veqaeq 7009 . . . . . . . . . . . . . . . . . . . 20 (((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→(Edg‘𝐺) ∧ ((𝐹‘0) ∈ dom (iEdg‘𝐺) ∧ (𝐹‘1) ∈ dom (iEdg‘𝐺))) → (((iEdg‘𝐺)‘(𝐹‘0)) = ((iEdg‘𝐺)‘(𝐹‘1)) → (𝐹‘0) = (𝐹‘1)))
3735, 36syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝐹:{0, 1}⟶dom (iEdg‘𝐺) ∧ (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→(Edg‘𝐺)) → (((iEdg‘𝐺)‘(𝐹‘0)) = ((iEdg‘𝐺)‘(𝐹‘1)) → (𝐹‘0) = (𝐹‘1)))
3837necon3d 3037 . . . . . . . . . . . . . . . . . 18 ((𝐹:{0, 1}⟶dom (iEdg‘𝐺) ∧ (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→(Edg‘𝐺)) → ((𝐹‘0) ≠ (𝐹‘1) → ((iEdg‘𝐺)‘(𝐹‘0)) ≠ ((iEdg‘𝐺)‘(𝐹‘1))))
39 simpl 485 . . . . . . . . . . . . . . . . . . . . . 22 ((((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → ((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)})
40 simpr 487 . . . . . . . . . . . . . . . . . . . . . 22 ((((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})
4139, 40neeq12d 3077 . . . . . . . . . . . . . . . . . . . . 21 ((((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → (((iEdg‘𝐺)‘(𝐹‘0)) ≠ ((iEdg‘𝐺)‘(𝐹‘1)) ↔ {(𝑃‘0), (𝑃‘1)} ≠ {(𝑃‘1), (𝑃‘2)}))
42 preq1 4662 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑃‘0) = (𝑃‘2) → {(𝑃‘0), (𝑃‘1)} = {(𝑃‘2), (𝑃‘1)})
43 prcom 4661 . . . . . . . . . . . . . . . . . . . . . . 23 {(𝑃‘2), (𝑃‘1)} = {(𝑃‘1), (𝑃‘2)}
4442, 43syl6eq 2872 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑃‘0) = (𝑃‘2) → {(𝑃‘0), (𝑃‘1)} = {(𝑃‘1), (𝑃‘2)})
4544necon3i 3048 . . . . . . . . . . . . . . . . . . . . 21 ({(𝑃‘0), (𝑃‘1)} ≠ {(𝑃‘1), (𝑃‘2)} → (𝑃‘0) ≠ (𝑃‘2))
4641, 45syl6bi 255 . . . . . . . . . . . . . . . . . . . 20 ((((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → (((iEdg‘𝐺)‘(𝐹‘0)) ≠ ((iEdg‘𝐺)‘(𝐹‘1)) → (𝑃‘0) ≠ (𝑃‘2)))
4746com12 32 . . . . . . . . . . . . . . . . . . 19 (((iEdg‘𝐺)‘(𝐹‘0)) ≠ ((iEdg‘𝐺)‘(𝐹‘1)) → ((((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → (𝑃‘0) ≠ (𝑃‘2)))
4847a1d 25 . . . . . . . . . . . . . . . . . 18 (((iEdg‘𝐺)‘(𝐹‘0)) ≠ ((iEdg‘𝐺)‘(𝐹‘1)) → (𝐺 ∈ USGraph → ((((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → (𝑃‘0) ≠ (𝑃‘2))))
4938, 48syl6 35 . . . . . . . . . . . . . . . . 17 ((𝐹:{0, 1}⟶dom (iEdg‘𝐺) ∧ (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→(Edg‘𝐺)) → ((𝐹‘0) ≠ (𝐹‘1) → (𝐺 ∈ USGraph → ((((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → (𝑃‘0) ≠ (𝑃‘2)))))
5049expcom 416 . . . . . . . . . . . . . . . 16 ((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→(Edg‘𝐺) → (𝐹:{0, 1}⟶dom (iEdg‘𝐺) → ((𝐹‘0) ≠ (𝐹‘1) → (𝐺 ∈ USGraph → ((((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → (𝑃‘0) ≠ (𝑃‘2))))))
5150impd 413 . . . . . . . . . . . . . . 15 ((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→(Edg‘𝐺) → ((𝐹:{0, 1}⟶dom (iEdg‘𝐺) ∧ (𝐹‘0) ≠ (𝐹‘1)) → (𝐺 ∈ USGraph → ((((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → (𝑃‘0) ≠ (𝑃‘2)))))
5251com23 86 . . . . . . . . . . . . . 14 ((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→(Edg‘𝐺) → (𝐺 ∈ USGraph → ((𝐹:{0, 1}⟶dom (iEdg‘𝐺) ∧ (𝐹‘0) ≠ (𝐹‘1)) → ((((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → (𝑃‘0) ≠ (𝑃‘2)))))
5326, 52syl 17 . . . . . . . . . . . . 13 ((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1-onto→(Edg‘𝐺) → (𝐺 ∈ USGraph → ((𝐹:{0, 1}⟶dom (iEdg‘𝐺) ∧ (𝐹‘0) ≠ (𝐹‘1)) → ((((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → (𝑃‘0) ≠ (𝑃‘2)))))
5425, 53mpcom 38 . . . . . . . . . . . 12 (𝐺 ∈ USGraph → ((𝐹:{0, 1}⟶dom (iEdg‘𝐺) ∧ (𝐹‘0) ≠ (𝐹‘1)) → ((((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → (𝑃‘0) ≠ (𝑃‘2))))
5523, 54syl5bi 244 . . . . . . . . . . 11 (𝐺 ∈ USGraph → (𝐹:{0, 1}–1-1→dom (iEdg‘𝐺) → ((((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → (𝑃‘0) ≠ (𝑃‘2))))
5655impd 413 . . . . . . . . . 10 (𝐺 ∈ USGraph → ((𝐹:{0, 1}–1-1→dom (iEdg‘𝐺) ∧ (((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) → (𝑃‘0) ≠ (𝑃‘2)))
5756adantr 483 . . . . . . . . 9 ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) → ((𝐹:{0, 1}–1-1→dom (iEdg‘𝐺) ∧ (((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) → (𝑃‘0) ≠ (𝑃‘2)))
5816, 57sylbid 242 . . . . . . . 8 ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) → ((𝐹:(0..^(♯‘𝐹))–1-1→dom (iEdg‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) → (𝑃‘0) ≠ (𝑃‘2)))
5958com12 32 . . . . . . 7 ((𝐹:(0..^(♯‘𝐹))–1-1→dom (iEdg‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) → ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) → (𝑃‘0) ≠ (𝑃‘2)))
60593adant2 1127 . . . . . 6 ((𝐹:(0..^(♯‘𝐹))–1-1→dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) → ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) → (𝑃‘0) ≠ (𝑃‘2)))
6160expdcom 417 . . . . 5 (𝐺 ∈ USGraph → ((♯‘𝐹) = 2 → ((𝐹:(0..^(♯‘𝐹))–1-1→dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) → (𝑃‘0) ≠ (𝑃‘2))))
6261com23 86 . . . 4 (𝐺 ∈ USGraph → ((𝐹:(0..^(♯‘𝐹))–1-1→dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) → ((♯‘𝐹) = 2 → (𝑃‘0) ≠ (𝑃‘2))))
635, 62sylbid 242 . . 3 (𝐺 ∈ USGraph → (𝐹(Trails‘𝐺)𝑃 → ((♯‘𝐹) = 2 → (𝑃‘0) ≠ (𝑃‘2))))
6463com23 86 . 2 (𝐺 ∈ USGraph → ((♯‘𝐹) = 2 → (𝐹(Trails‘𝐺)𝑃 → (𝑃‘0) ≠ (𝑃‘2))))
6564imp 409 1 ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) → (𝐹(Trails‘𝐺)𝑃 → (𝑃‘0) ≠ (𝑃‘2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  wne 3016  wral 3138  Vcvv 3494  {cpr 4562   class class class wbr 5058  dom cdm 5549  wf 6345  1-1wf1 6346  1-1-ontowf1o 6348  cfv 6349  (class class class)co 7150  0cc0 10531  1c1 10532   + caddc 10534  2c2 11686  ...cfz 12886  ..^cfzo 13027  chash 13684  Vtxcvtx 26775  iEdgciedg 26776  Edgcedg 26826  UPGraphcupgr 26859  USGraphcusgr 26928  Trailsctrls 27466
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-ifp 1058  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-oadd 8100  df-er 8283  df-map 8402  df-pm 8403  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-dju 9324  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-n0 11892  df-xnn0 11962  df-z 11976  df-uz 12238  df-fz 12887  df-fzo 13028  df-hash 13685  df-word 13856  df-edg 26827  df-uhgr 26837  df-upgr 26861  df-uspgr 26929  df-usgr 26930  df-wlks 27375  df-trls 27468
This theorem is referenced by:  usgr2trlspth  27536  usgr2trlncrct  27578
  Copyright terms: Public domain W3C validator