MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  usgr2trlncl Structured version   Visualization version   GIF version

Theorem usgr2trlncl 26712
Description: In a simple graph, any trail of length 2 does not start and end at the same vertex. (Contributed by AV, 5-Jun-2021.) (Proof shortened by AV, 31-Oct-2021.)
Assertion
Ref Expression
usgr2trlncl ((𝐺 ∈ USGraph ∧ (#‘𝐹) = 2) → (𝐹(Trails‘𝐺)𝑃 → (𝑃‘0) ≠ (𝑃‘2)))

Proof of Theorem usgr2trlncl
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 usgrupgr 26122 . . . . 5 (𝐺 ∈ USGraph → 𝐺 ∈ UPGraph)
2 eqid 2651 . . . . . 6 (Vtx‘𝐺) = (Vtx‘𝐺)
3 eqid 2651 . . . . . 6 (iEdg‘𝐺) = (iEdg‘𝐺)
42, 3upgrf1istrl 26656 . . . . 5 (𝐺 ∈ UPGraph → (𝐹(Trails‘𝐺)𝑃 ↔ (𝐹:(0..^(#‘𝐹))–1-1→dom (iEdg‘𝐺) ∧ 𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(#‘𝐹))((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})))
51, 4syl 17 . . . 4 (𝐺 ∈ USGraph → (𝐹(Trails‘𝐺)𝑃 ↔ (𝐹:(0..^(#‘𝐹))–1-1→dom (iEdg‘𝐺) ∧ 𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(#‘𝐹))((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})))
6 eqidd 2652 . . . . . . . . . . . 12 ((#‘𝐹) = 2 → 𝐹 = 𝐹)
7 oveq2 6698 . . . . . . . . . . . . 13 ((#‘𝐹) = 2 → (0..^(#‘𝐹)) = (0..^2))
8 fzo0to2pr 12593 . . . . . . . . . . . . 13 (0..^2) = {0, 1}
97, 8syl6eq 2701 . . . . . . . . . . . 12 ((#‘𝐹) = 2 → (0..^(#‘𝐹)) = {0, 1})
10 eqidd 2652 . . . . . . . . . . . 12 ((#‘𝐹) = 2 → dom (iEdg‘𝐺) = dom (iEdg‘𝐺))
116, 9, 10f1eq123d 6169 . . . . . . . . . . 11 ((#‘𝐹) = 2 → (𝐹:(0..^(#‘𝐹))–1-1→dom (iEdg‘𝐺) ↔ 𝐹:{0, 1}–1-1→dom (iEdg‘𝐺)))
129raleqdv 3174 . . . . . . . . . . . 12 ((#‘𝐹) = 2 → (∀𝑖 ∈ (0..^(#‘𝐹))((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ↔ ∀𝑖 ∈ {0, 1} ((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}))
13 2wlklem 26619 . . . . . . . . . . . 12 (∀𝑖 ∈ {0, 1} ((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ↔ (((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))
1412, 13syl6bb 276 . . . . . . . . . . 11 ((#‘𝐹) = 2 → (∀𝑖 ∈ (0..^(#‘𝐹))((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ↔ (((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})))
1511, 14anbi12d 747 . . . . . . . . . 10 ((#‘𝐹) = 2 → ((𝐹:(0..^(#‘𝐹))–1-1→dom (iEdg‘𝐺) ∧ ∀𝑖 ∈ (0..^(#‘𝐹))((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) ↔ (𝐹:{0, 1}–1-1→dom (iEdg‘𝐺) ∧ (((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))))
1615adantl 481 . . . . . . . . 9 ((𝐺 ∈ USGraph ∧ (#‘𝐹) = 2) → ((𝐹:(0..^(#‘𝐹))–1-1→dom (iEdg‘𝐺) ∧ ∀𝑖 ∈ (0..^(#‘𝐹))((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) ↔ (𝐹:{0, 1}–1-1→dom (iEdg‘𝐺) ∧ (((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))))
17 c0ex 10072 . . . . . . . . . . . . . 14 0 ∈ V
18 1ex 10073 . . . . . . . . . . . . . 14 1 ∈ V
1917, 18pm3.2i 470 . . . . . . . . . . . . 13 (0 ∈ V ∧ 1 ∈ V)
20 0ne1 11126 . . . . . . . . . . . . 13 0 ≠ 1
21 eqid 2651 . . . . . . . . . . . . . 14 {0, 1} = {0, 1}
2221f12dfv 6569 . . . . . . . . . . . . 13 (((0 ∈ V ∧ 1 ∈ V) ∧ 0 ≠ 1) → (𝐹:{0, 1}–1-1→dom (iEdg‘𝐺) ↔ (𝐹:{0, 1}⟶dom (iEdg‘𝐺) ∧ (𝐹‘0) ≠ (𝐹‘1))))
2319, 20, 22mp2an 708 . . . . . . . . . . . 12 (𝐹:{0, 1}–1-1→dom (iEdg‘𝐺) ↔ (𝐹:{0, 1}⟶dom (iEdg‘𝐺) ∧ (𝐹‘0) ≠ (𝐹‘1)))
24 eqid 2651 . . . . . . . . . . . . . 14 (Edg‘𝐺) = (Edg‘𝐺)
253, 24usgrf1oedg 26144 . . . . . . . . . . . . 13 (𝐺 ∈ USGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1-onto→(Edg‘𝐺))
26 f1of1 6174 . . . . . . . . . . . . . 14 ((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1-onto→(Edg‘𝐺) → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→(Edg‘𝐺))
27 id 22 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐹:{0, 1}⟶dom (iEdg‘𝐺) → 𝐹:{0, 1}⟶dom (iEdg‘𝐺))
2817prid1 4329 . . . . . . . . . . . . . . . . . . . . . . . . 25 0 ∈ {0, 1}
2928a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐹:{0, 1}⟶dom (iEdg‘𝐺) → 0 ∈ {0, 1})
3027, 29ffvelrnd 6400 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐹:{0, 1}⟶dom (iEdg‘𝐺) → (𝐹‘0) ∈ dom (iEdg‘𝐺))
3118prid2 4330 . . . . . . . . . . . . . . . . . . . . . . . . 25 1 ∈ {0, 1}
3231a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐹:{0, 1}⟶dom (iEdg‘𝐺) → 1 ∈ {0, 1})
3327, 32ffvelrnd 6400 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐹:{0, 1}⟶dom (iEdg‘𝐺) → (𝐹‘1) ∈ dom (iEdg‘𝐺))
3430, 33jca 553 . . . . . . . . . . . . . . . . . . . . . 22 (𝐹:{0, 1}⟶dom (iEdg‘𝐺) → ((𝐹‘0) ∈ dom (iEdg‘𝐺) ∧ (𝐹‘1) ∈ dom (iEdg‘𝐺)))
3534anim2i 592 . . . . . . . . . . . . . . . . . . . . 21 (((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→(Edg‘𝐺) ∧ 𝐹:{0, 1}⟶dom (iEdg‘𝐺)) → ((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→(Edg‘𝐺) ∧ ((𝐹‘0) ∈ dom (iEdg‘𝐺) ∧ (𝐹‘1) ∈ dom (iEdg‘𝐺))))
3635ancoms 468 . . . . . . . . . . . . . . . . . . . 20 ((𝐹:{0, 1}⟶dom (iEdg‘𝐺) ∧ (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→(Edg‘𝐺)) → ((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→(Edg‘𝐺) ∧ ((𝐹‘0) ∈ dom (iEdg‘𝐺) ∧ (𝐹‘1) ∈ dom (iEdg‘𝐺))))
37 f1veqaeq 6554 . . . . . . . . . . . . . . . . . . . 20 (((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→(Edg‘𝐺) ∧ ((𝐹‘0) ∈ dom (iEdg‘𝐺) ∧ (𝐹‘1) ∈ dom (iEdg‘𝐺))) → (((iEdg‘𝐺)‘(𝐹‘0)) = ((iEdg‘𝐺)‘(𝐹‘1)) → (𝐹‘0) = (𝐹‘1)))
3836, 37syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝐹:{0, 1}⟶dom (iEdg‘𝐺) ∧ (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→(Edg‘𝐺)) → (((iEdg‘𝐺)‘(𝐹‘0)) = ((iEdg‘𝐺)‘(𝐹‘1)) → (𝐹‘0) = (𝐹‘1)))
3938necon3d 2844 . . . . . . . . . . . . . . . . . 18 ((𝐹:{0, 1}⟶dom (iEdg‘𝐺) ∧ (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→(Edg‘𝐺)) → ((𝐹‘0) ≠ (𝐹‘1) → ((iEdg‘𝐺)‘(𝐹‘0)) ≠ ((iEdg‘𝐺)‘(𝐹‘1))))
40 simpl 472 . . . . . . . . . . . . . . . . . . . . . 22 ((((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → ((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)})
41 simpr 476 . . . . . . . . . . . . . . . . . . . . . 22 ((((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})
4240, 41neeq12d 2884 . . . . . . . . . . . . . . . . . . . . 21 ((((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → (((iEdg‘𝐺)‘(𝐹‘0)) ≠ ((iEdg‘𝐺)‘(𝐹‘1)) ↔ {(𝑃‘0), (𝑃‘1)} ≠ {(𝑃‘1), (𝑃‘2)}))
43 preq1 4300 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑃‘0) = (𝑃‘2) → {(𝑃‘0), (𝑃‘1)} = {(𝑃‘2), (𝑃‘1)})
44 prcom 4299 . . . . . . . . . . . . . . . . . . . . . . 23 {(𝑃‘2), (𝑃‘1)} = {(𝑃‘1), (𝑃‘2)}
4543, 44syl6eq 2701 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑃‘0) = (𝑃‘2) → {(𝑃‘0), (𝑃‘1)} = {(𝑃‘1), (𝑃‘2)})
4645necon3i 2855 . . . . . . . . . . . . . . . . . . . . 21 ({(𝑃‘0), (𝑃‘1)} ≠ {(𝑃‘1), (𝑃‘2)} → (𝑃‘0) ≠ (𝑃‘2))
4742, 46syl6bi 243 . . . . . . . . . . . . . . . . . . . 20 ((((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → (((iEdg‘𝐺)‘(𝐹‘0)) ≠ ((iEdg‘𝐺)‘(𝐹‘1)) → (𝑃‘0) ≠ (𝑃‘2)))
4847com12 32 . . . . . . . . . . . . . . . . . . 19 (((iEdg‘𝐺)‘(𝐹‘0)) ≠ ((iEdg‘𝐺)‘(𝐹‘1)) → ((((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → (𝑃‘0) ≠ (𝑃‘2)))
4948a1d 25 . . . . . . . . . . . . . . . . . 18 (((iEdg‘𝐺)‘(𝐹‘0)) ≠ ((iEdg‘𝐺)‘(𝐹‘1)) → (𝐺 ∈ USGraph → ((((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → (𝑃‘0) ≠ (𝑃‘2))))
5039, 49syl6 35 . . . . . . . . . . . . . . . . 17 ((𝐹:{0, 1}⟶dom (iEdg‘𝐺) ∧ (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→(Edg‘𝐺)) → ((𝐹‘0) ≠ (𝐹‘1) → (𝐺 ∈ USGraph → ((((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → (𝑃‘0) ≠ (𝑃‘2)))))
5150expcom 450 . . . . . . . . . . . . . . . 16 ((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→(Edg‘𝐺) → (𝐹:{0, 1}⟶dom (iEdg‘𝐺) → ((𝐹‘0) ≠ (𝐹‘1) → (𝐺 ∈ USGraph → ((((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → (𝑃‘0) ≠ (𝑃‘2))))))
5251impd 446 . . . . . . . . . . . . . . 15 ((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→(Edg‘𝐺) → ((𝐹:{0, 1}⟶dom (iEdg‘𝐺) ∧ (𝐹‘0) ≠ (𝐹‘1)) → (𝐺 ∈ USGraph → ((((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → (𝑃‘0) ≠ (𝑃‘2)))))
5352com23 86 . . . . . . . . . . . . . 14 ((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→(Edg‘𝐺) → (𝐺 ∈ USGraph → ((𝐹:{0, 1}⟶dom (iEdg‘𝐺) ∧ (𝐹‘0) ≠ (𝐹‘1)) → ((((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → (𝑃‘0) ≠ (𝑃‘2)))))
5426, 53syl 17 . . . . . . . . . . . . 13 ((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1-onto→(Edg‘𝐺) → (𝐺 ∈ USGraph → ((𝐹:{0, 1}⟶dom (iEdg‘𝐺) ∧ (𝐹‘0) ≠ (𝐹‘1)) → ((((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → (𝑃‘0) ≠ (𝑃‘2)))))
5525, 54mpcom 38 . . . . . . . . . . . 12 (𝐺 ∈ USGraph → ((𝐹:{0, 1}⟶dom (iEdg‘𝐺) ∧ (𝐹‘0) ≠ (𝐹‘1)) → ((((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → (𝑃‘0) ≠ (𝑃‘2))))
5623, 55syl5bi 232 . . . . . . . . . . 11 (𝐺 ∈ USGraph → (𝐹:{0, 1}–1-1→dom (iEdg‘𝐺) → ((((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → (𝑃‘0) ≠ (𝑃‘2))))
5756impd 446 . . . . . . . . . 10 (𝐺 ∈ USGraph → ((𝐹:{0, 1}–1-1→dom (iEdg‘𝐺) ∧ (((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) → (𝑃‘0) ≠ (𝑃‘2)))
5857adantr 480 . . . . . . . . 9 ((𝐺 ∈ USGraph ∧ (#‘𝐹) = 2) → ((𝐹:{0, 1}–1-1→dom (iEdg‘𝐺) ∧ (((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) → (𝑃‘0) ≠ (𝑃‘2)))
5916, 58sylbid 230 . . . . . . . 8 ((𝐺 ∈ USGraph ∧ (#‘𝐹) = 2) → ((𝐹:(0..^(#‘𝐹))–1-1→dom (iEdg‘𝐺) ∧ ∀𝑖 ∈ (0..^(#‘𝐹))((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) → (𝑃‘0) ≠ (𝑃‘2)))
6059com12 32 . . . . . . 7 ((𝐹:(0..^(#‘𝐹))–1-1→dom (iEdg‘𝐺) ∧ ∀𝑖 ∈ (0..^(#‘𝐹))((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) → ((𝐺 ∈ USGraph ∧ (#‘𝐹) = 2) → (𝑃‘0) ≠ (𝑃‘2)))
61603adant2 1100 . . . . . 6 ((𝐹:(0..^(#‘𝐹))–1-1→dom (iEdg‘𝐺) ∧ 𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(#‘𝐹))((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) → ((𝐺 ∈ USGraph ∧ (#‘𝐹) = 2) → (𝑃‘0) ≠ (𝑃‘2)))
6261expdcom 454 . . . . 5 (𝐺 ∈ USGraph → ((#‘𝐹) = 2 → ((𝐹:(0..^(#‘𝐹))–1-1→dom (iEdg‘𝐺) ∧ 𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(#‘𝐹))((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) → (𝑃‘0) ≠ (𝑃‘2))))
6362com23 86 . . . 4 (𝐺 ∈ USGraph → ((𝐹:(0..^(#‘𝐹))–1-1→dom (iEdg‘𝐺) ∧ 𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(#‘𝐹))((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) → ((#‘𝐹) = 2 → (𝑃‘0) ≠ (𝑃‘2))))
645, 63sylbid 230 . . 3 (𝐺 ∈ USGraph → (𝐹(Trails‘𝐺)𝑃 → ((#‘𝐹) = 2 → (𝑃‘0) ≠ (𝑃‘2))))
6564com23 86 . 2 (𝐺 ∈ USGraph → ((#‘𝐹) = 2 → (𝐹(Trails‘𝐺)𝑃 → (𝑃‘0) ≠ (𝑃‘2))))
6665imp 444 1 ((𝐺 ∈ USGraph ∧ (#‘𝐹) = 2) → (𝐹(Trails‘𝐺)𝑃 → (𝑃‘0) ≠ (𝑃‘2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1054   = wceq 1523  wcel 2030  wne 2823  wral 2941  Vcvv 3231  {cpr 4212   class class class wbr 4685  dom cdm 5143  wf 5922  1-1wf1 5923  1-1-ontowf1o 5925  cfv 5926  (class class class)co 6690  0cc0 9974  1c1 9975   + caddc 9977  2c2 11108  ...cfz 12364  ..^cfzo 12504  #chash 13157  Vtxcvtx 25919  iEdgciedg 25920  Edgcedg 25984  UPGraphcupgr 26020  USGraphcusgr 26089  Trailsctrls 26643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-ifp 1033  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-er 7787  df-map 7901  df-pm 7902  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-card 8803  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-n0 11331  df-xnn0 11402  df-z 11416  df-uz 11726  df-fz 12365  df-fzo 12505  df-hash 13158  df-word 13331  df-edg 25985  df-uhgr 25998  df-upgr 26022  df-uspgr 26090  df-usgr 26091  df-wlks 26551  df-trls 26645
This theorem is referenced by:  usgr2trlspth  26713  usgr2trlncrct  26754
  Copyright terms: Public domain W3C validator