MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  usgr2v1e2w Structured version   Visualization version   GIF version

Theorem usgr2v1e2w 26314
Description: A simple graph with two vertices and one edge represented by a singleton word. (Contributed by AV, 9-Jan-2021.)
Assertion
Ref Expression
usgr2v1e2w ((𝐴𝑋𝐵𝑌𝐴𝐵) → ⟨{𝐴, 𝐵}, ⟨“{𝐴, 𝐵}”⟩⟩ ∈ USGraph)

Proof of Theorem usgr2v1e2w
StepHypRef Expression
1 prex 5046 . . . 4 {𝐴, 𝐵} ∈ V
2 s1val 13539 . . . 4 ({𝐴, 𝐵} ∈ V → ⟨“{𝐴, 𝐵}”⟩ = {⟨0, {𝐴, 𝐵}⟩})
31, 2mp1i 13 . . 3 ((𝐴𝑋𝐵𝑌𝐴𝐵) → ⟨“{𝐴, 𝐵}”⟩ = {⟨0, {𝐴, 𝐵}⟩})
43opeq2d 4548 . 2 ((𝐴𝑋𝐵𝑌𝐴𝐵) → ⟨{𝐴, 𝐵}, ⟨“{𝐴, 𝐵}”⟩⟩ = ⟨{𝐴, 𝐵}, {⟨0, {𝐴, 𝐵}⟩}⟩)
5 prid1g 4427 . . . . 5 (𝐴𝑋𝐴 ∈ {𝐴, 𝐵})
6 prid2g 4428 . . . . 5 (𝐵𝑌𝐵 ∈ {𝐴, 𝐵})
75, 6anim12i 591 . . . 4 ((𝐴𝑋𝐵𝑌) → (𝐴 ∈ {𝐴, 𝐵} ∧ 𝐵 ∈ {𝐴, 𝐵}))
8 c0ex 10197 . . . . 5 0 ∈ V
91, 8pm3.2i 470 . . . 4 ({𝐴, 𝐵} ∈ V ∧ 0 ∈ V)
107, 9jctil 561 . . 3 ((𝐴𝑋𝐵𝑌) → (({𝐴, 𝐵} ∈ V ∧ 0 ∈ V) ∧ (𝐴 ∈ {𝐴, 𝐵} ∧ 𝐵 ∈ {𝐴, 𝐵})))
11 usgr1eop 26312 . . . 4 ((({𝐴, 𝐵} ∈ V ∧ 0 ∈ V) ∧ (𝐴 ∈ {𝐴, 𝐵} ∧ 𝐵 ∈ {𝐴, 𝐵})) → (𝐴𝐵 → ⟨{𝐴, 𝐵}, {⟨0, {𝐴, 𝐵}⟩}⟩ ∈ USGraph))
1211imp 444 . . 3 (((({𝐴, 𝐵} ∈ V ∧ 0 ∈ V) ∧ (𝐴 ∈ {𝐴, 𝐵} ∧ 𝐵 ∈ {𝐴, 𝐵})) ∧ 𝐴𝐵) → ⟨{𝐴, 𝐵}, {⟨0, {𝐴, 𝐵}⟩}⟩ ∈ USGraph)
1310, 12stoic3 1838 . 2 ((𝐴𝑋𝐵𝑌𝐴𝐵) → ⟨{𝐴, 𝐵}, {⟨0, {𝐴, 𝐵}⟩}⟩ ∈ USGraph)
144, 13eqeltrd 2827 1 ((𝐴𝑋𝐵𝑌𝐴𝐵) → ⟨{𝐴, 𝐵}, ⟨“{𝐴, 𝐵}”⟩⟩ ∈ USGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1072   = wceq 1620  wcel 2127  wne 2920  Vcvv 3328  {csn 4309  {cpr 4311  cop 4315  0cc0 10099  ⟨“cs1 13451  USGraphcusgr 26214
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1859  ax-4 1874  ax-5 1976  ax-6 2042  ax-7 2078  ax-8 2129  ax-9 2136  ax-10 2156  ax-11 2171  ax-12 2184  ax-13 2379  ax-ext 2728  ax-rep 4911  ax-sep 4921  ax-nul 4929  ax-pow 4980  ax-pr 5043  ax-un 7102  ax-cnex 10155  ax-resscn 10156  ax-1cn 10157  ax-icn 10158  ax-addcl 10159  ax-addrcl 10160  ax-mulcl 10161  ax-mulrcl 10162  ax-mulcom 10163  ax-addass 10164  ax-mulass 10165  ax-distr 10166  ax-i2m1 10167  ax-1ne0 10168  ax-1rid 10169  ax-rnegex 10170  ax-rrecex 10171  ax-cnre 10172  ax-pre-lttri 10173  ax-pre-lttrn 10174  ax-pre-ltadd 10175  ax-pre-mulgt0 10176
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1623  df-ex 1842  df-nf 1847  df-sb 2035  df-eu 2599  df-mo 2600  df-clab 2735  df-cleq 2741  df-clel 2744  df-nfc 2879  df-ne 2921  df-nel 3024  df-ral 3043  df-rex 3044  df-reu 3045  df-rmo 3046  df-rab 3047  df-v 3330  df-sbc 3565  df-csb 3663  df-dif 3706  df-un 3708  df-in 3710  df-ss 3717  df-pss 3719  df-nul 4047  df-if 4219  df-pw 4292  df-sn 4310  df-pr 4312  df-tp 4314  df-op 4316  df-uni 4577  df-int 4616  df-iun 4662  df-br 4793  df-opab 4853  df-mpt 4870  df-tr 4893  df-id 5162  df-eprel 5167  df-po 5175  df-so 5176  df-fr 5213  df-we 5215  df-xp 5260  df-rel 5261  df-cnv 5262  df-co 5263  df-dm 5264  df-rn 5265  df-res 5266  df-ima 5267  df-pred 5829  df-ord 5875  df-on 5876  df-lim 5877  df-suc 5878  df-iota 6000  df-fun 6039  df-fn 6040  df-f 6041  df-f1 6042  df-fo 6043  df-f1o 6044  df-fv 6045  df-riota 6762  df-ov 6804  df-oprab 6805  df-mpt2 6806  df-om 7219  df-1st 7321  df-2nd 7322  df-wrecs 7564  df-recs 7625  df-rdg 7663  df-1o 7717  df-oadd 7721  df-er 7899  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-card 8926  df-cda 9153  df-pnf 10239  df-mnf 10240  df-xr 10241  df-ltxr 10242  df-le 10243  df-sub 10431  df-neg 10432  df-nn 11184  df-2 11242  df-n0 11456  df-xnn0 11527  df-z 11541  df-uz 11851  df-fz 12491  df-hash 13283  df-s1 13459  df-vtx 26046  df-iedg 26047  df-edg 26110  df-uspgr 26215  df-usgr 26216
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator