Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  usgredgreu Structured version   Visualization version   GIF version

Theorem usgredgreu 26037
 Description: For a vertex incident to an edge there is exactly one other vertex incident to the edge. (Contributed by Alexander van der Vekens, 4-Jan-2018.) (Revised by AV, 18-Oct-2020.)
Hypotheses
Ref Expression
usgredg3.v 𝑉 = (Vtx‘𝐺)
usgredg3.e 𝐸 = (iEdg‘𝐺)
Assertion
Ref Expression
usgredgreu ((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸𝑌 ∈ (𝐸𝑋)) → ∃!𝑦𝑉 (𝐸𝑋) = {𝑌, 𝑦})
Distinct variable groups:   𝑦,𝐸   𝑦,𝐺   𝑦,𝑉   𝑦,𝑋   𝑦,𝑌

Proof of Theorem usgredgreu
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 usgredg3.v . . 3 𝑉 = (Vtx‘𝐺)
2 usgredg3.e . . 3 𝐸 = (iEdg‘𝐺)
31, 2usgredg4 26036 . 2 ((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸𝑌 ∈ (𝐸𝑋)) → ∃𝑦𝑉 (𝐸𝑋) = {𝑌, 𝑦})
4 eqtr2 2641 . . . . 5 (((𝐸𝑋) = {𝑌, 𝑦} ∧ (𝐸𝑋) = {𝑌, 𝑥}) → {𝑌, 𝑦} = {𝑌, 𝑥})
5 vex 3193 . . . . . 6 𝑦 ∈ V
6 vex 3193 . . . . . 6 𝑥 ∈ V
75, 6preqr2 4356 . . . . 5 ({𝑌, 𝑦} = {𝑌, 𝑥} → 𝑦 = 𝑥)
84, 7syl 17 . . . 4 (((𝐸𝑋) = {𝑌, 𝑦} ∧ (𝐸𝑋) = {𝑌, 𝑥}) → 𝑦 = 𝑥)
98a1i 11 . . 3 (((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸𝑌 ∈ (𝐸𝑋)) ∧ (𝑦𝑉𝑥𝑉)) → (((𝐸𝑋) = {𝑌, 𝑦} ∧ (𝐸𝑋) = {𝑌, 𝑥}) → 𝑦 = 𝑥))
109ralrimivva 2967 . 2 ((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸𝑌 ∈ (𝐸𝑋)) → ∀𝑦𝑉𝑥𝑉 (((𝐸𝑋) = {𝑌, 𝑦} ∧ (𝐸𝑋) = {𝑌, 𝑥}) → 𝑦 = 𝑥))
11 preq2 4246 . . . 4 (𝑦 = 𝑥 → {𝑌, 𝑦} = {𝑌, 𝑥})
1211eqeq2d 2631 . . 3 (𝑦 = 𝑥 → ((𝐸𝑋) = {𝑌, 𝑦} ↔ (𝐸𝑋) = {𝑌, 𝑥}))
1312reu4 3387 . 2 (∃!𝑦𝑉 (𝐸𝑋) = {𝑌, 𝑦} ↔ (∃𝑦𝑉 (𝐸𝑋) = {𝑌, 𝑦} ∧ ∀𝑦𝑉𝑥𝑉 (((𝐸𝑋) = {𝑌, 𝑦} ∧ (𝐸𝑋) = {𝑌, 𝑥}) → 𝑦 = 𝑥)))
143, 10, 13sylanbrc 697 1 ((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸𝑌 ∈ (𝐸𝑋)) → ∃!𝑦𝑉 (𝐸𝑋) = {𝑌, 𝑦})
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 384   ∧ w3a 1036   = wceq 1480   ∈ wcel 1987  ∀wral 2908  ∃wrex 2909  ∃!wreu 2910  {cpr 4157  dom cdm 5084  ‘cfv 5857  Vtxcvtx 25808  iEdgciedg 25809   USGraph cusgr 25971 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4741  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-cnex 9952  ax-resscn 9953  ax-1cn 9954  ax-icn 9955  ax-addcl 9956  ax-addrcl 9957  ax-mulcl 9958  ax-mulrcl 9959  ax-mulcom 9960  ax-addass 9961  ax-mulass 9962  ax-distr 9963  ax-i2m1 9964  ax-1ne0 9965  ax-1rid 9966  ax-rnegex 9967  ax-rrecex 9968  ax-cnre 9969  ax-pre-lttri 9970  ax-pre-lttrn 9971  ax-pre-ltadd 9972  ax-pre-mulgt0 9973 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2913  df-rex 2914  df-reu 2915  df-rmo 2916  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-int 4448  df-iun 4494  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-riota 6576  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-om 7028  df-1st 7128  df-2nd 7129  df-wrecs 7367  df-recs 7428  df-rdg 7466  df-1o 7520  df-2o 7521  df-oadd 7524  df-er 7702  df-en 7916  df-dom 7917  df-sdom 7918  df-fin 7919  df-card 8725  df-cda 8950  df-pnf 10036  df-mnf 10037  df-xr 10038  df-ltxr 10039  df-le 10040  df-sub 10228  df-neg 10229  df-nn 10981  df-2 11039  df-n0 11253  df-z 11338  df-uz 11648  df-fz 12285  df-hash 13074  df-edg 25874  df-umgr 25908  df-usgr 25973 This theorem is referenced by:  usgredg2vtxeuALT  26041  usgredg2vlem1  26044  usgredg2vlem2  26045
 Copyright terms: Public domain W3C validator