MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  usgredgsscusgredg Structured version   Visualization version   GIF version

Theorem usgredgsscusgredg 27169
Description: A simple graph is a subgraph of a complete simple graph. (Contributed by Alexander van der Vekens, 11-Jan-2018.) (Revised by AV, 13-Nov-2020.)
Hypotheses
Ref Expression
fusgrmaxsize.v 𝑉 = (Vtx‘𝐺)
fusgrmaxsize.e 𝐸 = (Edg‘𝐺)
usgrsscusgra.h 𝑉 = (Vtx‘𝐻)
usgrsscusgra.f 𝐹 = (Edg‘𝐻)
Assertion
Ref Expression
usgredgsscusgredg ((𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph) → 𝐸𝐹)

Proof of Theorem usgredgsscusgredg
Dummy variables 𝑒 𝑎 𝑏 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fusgrmaxsize.v . . . . 5 𝑉 = (Vtx‘𝐺)
2 fusgrmaxsize.e . . . . 5 𝐸 = (Edg‘𝐺)
31, 2usgredg 26909 . . . 4 ((𝐺 ∈ USGraph ∧ 𝑒𝐸) → ∃𝑎𝑉𝑏𝑉 (𝑎𝑏𝑒 = {𝑎, 𝑏}))
4 usgrsscusgra.h . . . . . . . 8 𝑉 = (Vtx‘𝐻)
5 usgrsscusgra.f . . . . . . . 8 𝐹 = (Edg‘𝐻)
64, 5iscusgredg 27133 . . . . . . 7 (𝐻 ∈ ComplUSGraph ↔ (𝐻 ∈ USGraph ∧ ∀𝑘𝑉𝑛 ∈ (𝑉 ∖ {𝑘}){𝑛, 𝑘} ∈ 𝐹))
7 sneq 4569 . . . . . . . . . . . . 13 (𝑘 = 𝑎 → {𝑘} = {𝑎})
87difeq2d 4098 . . . . . . . . . . . 12 (𝑘 = 𝑎 → (𝑉 ∖ {𝑘}) = (𝑉 ∖ {𝑎}))
9 preq2 4664 . . . . . . . . . . . . 13 (𝑘 = 𝑎 → {𝑛, 𝑘} = {𝑛, 𝑎})
109eleq1d 2897 . . . . . . . . . . . 12 (𝑘 = 𝑎 → ({𝑛, 𝑘} ∈ 𝐹 ↔ {𝑛, 𝑎} ∈ 𝐹))
118, 10raleqbidv 3402 . . . . . . . . . . 11 (𝑘 = 𝑎 → (∀𝑛 ∈ (𝑉 ∖ {𝑘}){𝑛, 𝑘} ∈ 𝐹 ↔ ∀𝑛 ∈ (𝑉 ∖ {𝑎}){𝑛, 𝑎} ∈ 𝐹))
1211rspcv 3617 . . . . . . . . . 10 (𝑎𝑉 → (∀𝑘𝑉𝑛 ∈ (𝑉 ∖ {𝑘}){𝑛, 𝑘} ∈ 𝐹 → ∀𝑛 ∈ (𝑉 ∖ {𝑎}){𝑛, 𝑎} ∈ 𝐹))
13 simpl 483 . . . . . . . . . . . . . . 15 ((𝑎𝑏𝑒 = {𝑎, 𝑏}) → 𝑎𝑏)
1413necomd 3071 . . . . . . . . . . . . . 14 ((𝑎𝑏𝑒 = {𝑎, 𝑏}) → 𝑏𝑎)
1514anim2i 616 . . . . . . . . . . . . 13 ((𝑏𝑉 ∧ (𝑎𝑏𝑒 = {𝑎, 𝑏})) → (𝑏𝑉𝑏𝑎))
16 eldifsn 4713 . . . . . . . . . . . . 13 (𝑏 ∈ (𝑉 ∖ {𝑎}) ↔ (𝑏𝑉𝑏𝑎))
1715, 16sylibr 235 . . . . . . . . . . . 12 ((𝑏𝑉 ∧ (𝑎𝑏𝑒 = {𝑎, 𝑏})) → 𝑏 ∈ (𝑉 ∖ {𝑎}))
18 preq1 4663 . . . . . . . . . . . . . 14 (𝑛 = 𝑏 → {𝑛, 𝑎} = {𝑏, 𝑎})
1918eleq1d 2897 . . . . . . . . . . . . 13 (𝑛 = 𝑏 → ({𝑛, 𝑎} ∈ 𝐹 ↔ {𝑏, 𝑎} ∈ 𝐹))
2019rspcv 3617 . . . . . . . . . . . 12 (𝑏 ∈ (𝑉 ∖ {𝑎}) → (∀𝑛 ∈ (𝑉 ∖ {𝑎}){𝑛, 𝑎} ∈ 𝐹 → {𝑏, 𝑎} ∈ 𝐹))
2117, 20syl 17 . . . . . . . . . . 11 ((𝑏𝑉 ∧ (𝑎𝑏𝑒 = {𝑎, 𝑏})) → (∀𝑛 ∈ (𝑉 ∖ {𝑎}){𝑛, 𝑎} ∈ 𝐹 → {𝑏, 𝑎} ∈ 𝐹))
22 prcom 4662 . . . . . . . . . . . . . . . 16 {𝑎, 𝑏} = {𝑏, 𝑎}
2322eqeq2i 2834 . . . . . . . . . . . . . . 15 (𝑒 = {𝑎, 𝑏} ↔ 𝑒 = {𝑏, 𝑎})
24 eqcom 2828 . . . . . . . . . . . . . . 15 (𝑒 = {𝑏, 𝑎} ↔ {𝑏, 𝑎} = 𝑒)
2523, 24sylbb 220 . . . . . . . . . . . . . 14 (𝑒 = {𝑎, 𝑏} → {𝑏, 𝑎} = 𝑒)
2625eleq1d 2897 . . . . . . . . . . . . 13 (𝑒 = {𝑎, 𝑏} → ({𝑏, 𝑎} ∈ 𝐹𝑒𝐹))
2726biimpd 230 . . . . . . . . . . . 12 (𝑒 = {𝑎, 𝑏} → ({𝑏, 𝑎} ∈ 𝐹𝑒𝐹))
2827ad2antll 725 . . . . . . . . . . 11 ((𝑏𝑉 ∧ (𝑎𝑏𝑒 = {𝑎, 𝑏})) → ({𝑏, 𝑎} ∈ 𝐹𝑒𝐹))
2921, 28syld 47 . . . . . . . . . 10 ((𝑏𝑉 ∧ (𝑎𝑏𝑒 = {𝑎, 𝑏})) → (∀𝑛 ∈ (𝑉 ∖ {𝑎}){𝑛, 𝑎} ∈ 𝐹𝑒𝐹))
3012, 29syl9 77 . . . . . . . . 9 (𝑎𝑉 → ((𝑏𝑉 ∧ (𝑎𝑏𝑒 = {𝑎, 𝑏})) → (∀𝑘𝑉𝑛 ∈ (𝑉 ∖ {𝑘}){𝑛, 𝑘} ∈ 𝐹𝑒𝐹)))
3130impl 456 . . . . . . . 8 (((𝑎𝑉𝑏𝑉) ∧ (𝑎𝑏𝑒 = {𝑎, 𝑏})) → (∀𝑘𝑉𝑛 ∈ (𝑉 ∖ {𝑘}){𝑛, 𝑘} ∈ 𝐹𝑒𝐹))
3231adantld 491 . . . . . . 7 (((𝑎𝑉𝑏𝑉) ∧ (𝑎𝑏𝑒 = {𝑎, 𝑏})) → ((𝐻 ∈ USGraph ∧ ∀𝑘𝑉𝑛 ∈ (𝑉 ∖ {𝑘}){𝑛, 𝑘} ∈ 𝐹) → 𝑒𝐹))
336, 32syl5bi 243 . . . . . 6 (((𝑎𝑉𝑏𝑉) ∧ (𝑎𝑏𝑒 = {𝑎, 𝑏})) → (𝐻 ∈ ComplUSGraph → 𝑒𝐹))
3433ex 413 . . . . 5 ((𝑎𝑉𝑏𝑉) → ((𝑎𝑏𝑒 = {𝑎, 𝑏}) → (𝐻 ∈ ComplUSGraph → 𝑒𝐹)))
3534rexlimivv 3292 . . . 4 (∃𝑎𝑉𝑏𝑉 (𝑎𝑏𝑒 = {𝑎, 𝑏}) → (𝐻 ∈ ComplUSGraph → 𝑒𝐹))
363, 35syl 17 . . 3 ((𝐺 ∈ USGraph ∧ 𝑒𝐸) → (𝐻 ∈ ComplUSGraph → 𝑒𝐹))
3736impancom 452 . 2 ((𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph) → (𝑒𝐸𝑒𝐹))
3837ssrdv 3972 1 ((𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph) → 𝐸𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1528  wcel 2105  wne 3016  wral 3138  wrex 3139  cdif 3932  wss 3935  {csn 4559  {cpr 4561  cfv 6349  Vtxcvtx 26709  Edgcedg 26760  USGraphcusgr 26862  ComplUSGraphccusgr 27120
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7450  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-fal 1541  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4833  df-int 4870  df-iun 4914  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7569  df-1st 7680  df-2nd 7681  df-wrecs 7938  df-recs 7999  df-rdg 8037  df-1o 8093  df-2o 8094  df-oadd 8097  df-er 8279  df-en 8499  df-dom 8500  df-sdom 8501  df-fin 8502  df-dju 9319  df-card 9357  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11628  df-2 11689  df-n0 11887  df-xnn0 11957  df-z 11971  df-uz 12233  df-fz 12883  df-hash 13681  df-edg 26761  df-upgr 26795  df-umgr 26796  df-usgr 26864  df-nbgr 27043  df-uvtx 27096  df-cplgr 27121  df-cusgr 27122
This theorem is referenced by:  usgrsscusgr  27170  sizusglecusglem1  27171
  Copyright terms: Public domain W3C validator