![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > usgrres1 | Structured version Visualization version GIF version |
Description: Restricting a simple graph by removing one vertex results in a simple graph. Remark: This restricted graph is not a subgraph of the original graph in the sense of df-subgr 26205 since the domains of the edge functions may not be compatible. (Contributed by Alexander van der Vekens, 2-Jan-2018.) (Revised by AV, 10-Jan-2020.) (Revised by AV, 23-Oct-2020.) (Proof shortened by AV, 27-Nov-2020.) |
Ref | Expression |
---|---|
upgrres1.v | ⊢ 𝑉 = (Vtx‘𝐺) |
upgrres1.e | ⊢ 𝐸 = (Edg‘𝐺) |
upgrres1.f | ⊢ 𝐹 = {𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒} |
upgrres1.s | ⊢ 𝑆 = 〈(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)〉 |
Ref | Expression |
---|---|
usgrres1 | ⊢ ((𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉) → 𝑆 ∈ USGraph) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1oi 6212 | . . . . 5 ⊢ ( I ↾ 𝐹):𝐹–1-1-onto→𝐹 | |
2 | f1of1 6174 | . . . . 5 ⊢ (( I ↾ 𝐹):𝐹–1-1-onto→𝐹 → ( I ↾ 𝐹):𝐹–1-1→𝐹) | |
3 | 1, 2 | mp1i 13 | . . . 4 ⊢ ((𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉) → ( I ↾ 𝐹):𝐹–1-1→𝐹) |
4 | eqidd 2652 | . . . . 5 ⊢ ((𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉) → ( I ↾ 𝐹) = ( I ↾ 𝐹)) | |
5 | dmresi 5492 | . . . . . 6 ⊢ dom ( I ↾ 𝐹) = 𝐹 | |
6 | 5 | a1i 11 | . . . . 5 ⊢ ((𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉) → dom ( I ↾ 𝐹) = 𝐹) |
7 | eqidd 2652 | . . . . 5 ⊢ ((𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉) → 𝐹 = 𝐹) | |
8 | 4, 6, 7 | f1eq123d 6169 | . . . 4 ⊢ ((𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉) → (( I ↾ 𝐹):dom ( I ↾ 𝐹)–1-1→𝐹 ↔ ( I ↾ 𝐹):𝐹–1-1→𝐹)) |
9 | 3, 8 | mpbird 247 | . . 3 ⊢ ((𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉) → ( I ↾ 𝐹):dom ( I ↾ 𝐹)–1-1→𝐹) |
10 | usgrumgr 26119 | . . . 4 ⊢ (𝐺 ∈ USGraph → 𝐺 ∈ UMGraph) | |
11 | upgrres1.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
12 | upgrres1.e | . . . . 5 ⊢ 𝐸 = (Edg‘𝐺) | |
13 | upgrres1.f | . . . . 5 ⊢ 𝐹 = {𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒} | |
14 | 11, 12, 13 | umgrres1lem 26247 | . . . 4 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉) → ran ( I ↾ 𝐹) ⊆ {𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (#‘𝑝) = 2}) |
15 | 10, 14 | sylan 487 | . . 3 ⊢ ((𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉) → ran ( I ↾ 𝐹) ⊆ {𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (#‘𝑝) = 2}) |
16 | f1ssr 6145 | . . 3 ⊢ ((( I ↾ 𝐹):dom ( I ↾ 𝐹)–1-1→𝐹 ∧ ran ( I ↾ 𝐹) ⊆ {𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (#‘𝑝) = 2}) → ( I ↾ 𝐹):dom ( I ↾ 𝐹)–1-1→{𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (#‘𝑝) = 2}) | |
17 | 9, 15, 16 | syl2anc 694 | . 2 ⊢ ((𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉) → ( I ↾ 𝐹):dom ( I ↾ 𝐹)–1-1→{𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (#‘𝑝) = 2}) |
18 | upgrres1.s | . . . 4 ⊢ 𝑆 = 〈(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)〉 | |
19 | opex 4962 | . . . 4 ⊢ 〈(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)〉 ∈ V | |
20 | 18, 19 | eqeltri 2726 | . . 3 ⊢ 𝑆 ∈ V |
21 | 11, 12, 13, 18 | upgrres1lem2 26248 | . . . . 5 ⊢ (Vtx‘𝑆) = (𝑉 ∖ {𝑁}) |
22 | 21 | eqcomi 2660 | . . . 4 ⊢ (𝑉 ∖ {𝑁}) = (Vtx‘𝑆) |
23 | 11, 12, 13, 18 | upgrres1lem3 26249 | . . . . 5 ⊢ (iEdg‘𝑆) = ( I ↾ 𝐹) |
24 | 23 | eqcomi 2660 | . . . 4 ⊢ ( I ↾ 𝐹) = (iEdg‘𝑆) |
25 | 22, 24 | isusgrs 26096 | . . 3 ⊢ (𝑆 ∈ V → (𝑆 ∈ USGraph ↔ ( I ↾ 𝐹):dom ( I ↾ 𝐹)–1-1→{𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (#‘𝑝) = 2})) |
26 | 20, 25 | mp1i 13 | . 2 ⊢ ((𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉) → (𝑆 ∈ USGraph ↔ ( I ↾ 𝐹):dom ( I ↾ 𝐹)–1-1→{𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (#‘𝑝) = 2})) |
27 | 17, 26 | mpbird 247 | 1 ⊢ ((𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉) → 𝑆 ∈ USGraph) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1523 ∈ wcel 2030 ∉ wnel 2926 {crab 2945 Vcvv 3231 ∖ cdif 3604 ⊆ wss 3607 𝒫 cpw 4191 {csn 4210 〈cop 4216 I cid 5052 dom cdm 5143 ran crn 5144 ↾ cres 5145 –1-1→wf1 5923 –1-1-onto→wf1o 5925 ‘cfv 5926 2c2 11108 #chash 13157 Vtxcvtx 25919 iEdgciedg 25920 Edgcedg 25984 UMGraphcumgr 26021 USGraphcusgr 26089 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-1st 7210 df-2nd 7211 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-1o 7605 df-er 7787 df-en 7998 df-dom 7999 df-sdom 8000 df-fin 8001 df-card 8803 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-nn 11059 df-2 11117 df-n0 11331 df-z 11416 df-uz 11726 df-fz 12365 df-hash 13158 df-vtx 25921 df-iedg 25922 df-edg 25985 df-uhgr 25998 df-upgr 26022 df-umgr 26023 df-usgr 26091 |
This theorem is referenced by: fusgrfis 26267 cusgrres 26400 |
Copyright terms: Public domain | W3C validator |