MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ushgrunop Structured version   Visualization version   GIF version

Theorem ushgrunop 25902
Description: The union of two (undirected) simple hypergraphs (with the same vertex set) represented as ordered pair: If 𝑉, 𝐸 and 𝑉, 𝐹 are simple hypergraphs, then 𝑉, 𝐸𝐹 is a (not necessarily simple) hypergraph - the vertex set stays the same, but the edges from both graphs are kept, possibly resulting in two edges between two vertices. (Contributed by AV, 29-Nov-2020.) (Revised by AV, 24-Oct-2021.)
Hypotheses
Ref Expression
ushgrun.g (𝜑𝐺 ∈ USHGraph )
ushgrun.h (𝜑𝐻 ∈ USHGraph )
ushgrun.e 𝐸 = (iEdg‘𝐺)
ushgrun.f 𝐹 = (iEdg‘𝐻)
ushgrun.vg 𝑉 = (Vtx‘𝐺)
ushgrun.vh (𝜑 → (Vtx‘𝐻) = 𝑉)
ushgrun.i (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅)
Assertion
Ref Expression
ushgrunop (𝜑 → ⟨𝑉, (𝐸𝐹)⟩ ∈ UHGraph )

Proof of Theorem ushgrunop
StepHypRef Expression
1 ushgrun.g . . 3 (𝜑𝐺 ∈ USHGraph )
2 ushgruhgr 25894 . . 3 (𝐺 ∈ USHGraph → 𝐺 ∈ UHGraph )
31, 2syl 17 . 2 (𝜑𝐺 ∈ UHGraph )
4 ushgrun.h . . 3 (𝜑𝐻 ∈ USHGraph )
5 ushgruhgr 25894 . . 3 (𝐻 ∈ USHGraph → 𝐻 ∈ UHGraph )
64, 5syl 17 . 2 (𝜑𝐻 ∈ UHGraph )
7 ushgrun.e . 2 𝐸 = (iEdg‘𝐺)
8 ushgrun.f . 2 𝐹 = (iEdg‘𝐻)
9 ushgrun.vg . 2 𝑉 = (Vtx‘𝐺)
10 ushgrun.vh . 2 (𝜑 → (Vtx‘𝐻) = 𝑉)
11 ushgrun.i . 2 (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅)
123, 6, 7, 8, 9, 10, 11uhgrunop 25900 1 (𝜑 → ⟨𝑉, (𝐸𝐹)⟩ ∈ UHGraph )
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1480  wcel 1987  cun 3558  cin 3559  c0 3897  cop 4161  dom cdm 5084  cfv 5857  Vtxcvtx 25808  iEdgciedg 25809   UHGraph cuhgr 25881   USHGraph cushgr 25882
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ral 2913  df-rex 2914  df-rab 2917  df-v 3192  df-sbc 3423  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-op 4162  df-uni 4410  df-br 4624  df-opab 4684  df-mpt 4685  df-id 4999  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fv 5865  df-1st 7128  df-2nd 7129  df-vtx 25810  df-iedg 25811  df-uhgr 25883  df-ushgr 25884
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator