MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uspgr1v1eop Structured version   Visualization version   GIF version

Theorem uspgr1v1eop 26034
Description: A simple pseudograph with (at least) one vertex and one edge (a loop). (Contributed by AV, 5-Dec-2020.)
Assertion
Ref Expression
uspgr1v1eop ((𝑉𝑊𝐴𝑋𝐵𝑉) → ⟨𝑉, {⟨𝐴, {𝐵}⟩}⟩ ∈ USPGraph )

Proof of Theorem uspgr1v1eop
StepHypRef Expression
1 dfsn2 4161 . . . . 5 {𝐵} = {𝐵, 𝐵}
21opeq2i 4374 . . . 4 𝐴, {𝐵}⟩ = ⟨𝐴, {𝐵, 𝐵}⟩
32sneqi 4159 . . 3 {⟨𝐴, {𝐵}⟩} = {⟨𝐴, {𝐵, 𝐵}⟩}
43opeq2i 4374 . 2 𝑉, {⟨𝐴, {𝐵}⟩}⟩ = ⟨𝑉, {⟨𝐴, {𝐵, 𝐵}⟩}⟩
5 3simpa 1056 . . 3 ((𝑉𝑊𝐴𝑋𝐵𝑉) → (𝑉𝑊𝐴𝑋))
6 id 22 . . . . 5 (𝐵𝑉𝐵𝑉)
76ancri 574 . . . 4 (𝐵𝑉 → (𝐵𝑉𝐵𝑉))
873ad2ant3 1082 . . 3 ((𝑉𝑊𝐴𝑋𝐵𝑉) → (𝐵𝑉𝐵𝑉))
9 uspgr1eop 26032 . . 3 (((𝑉𝑊𝐴𝑋) ∧ (𝐵𝑉𝐵𝑉)) → ⟨𝑉, {⟨𝐴, {𝐵, 𝐵}⟩}⟩ ∈ USPGraph )
105, 8, 9syl2anc 692 . 2 ((𝑉𝑊𝐴𝑋𝐵𝑉) → ⟨𝑉, {⟨𝐴, {𝐵, 𝐵}⟩}⟩ ∈ USPGraph )
114, 10syl5eqel 2702 1 ((𝑉𝑊𝐴𝑋𝐵𝑉) → ⟨𝑉, {⟨𝐴, {𝐵}⟩}⟩ ∈ USPGraph )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1036  wcel 1987  {csn 4148  {cpr 4150  cop 4154   USPGraph cuspgr 25936
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-card 8709  df-cda 8934  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-2 11023  df-n0 11237  df-xnn0 11308  df-z 11322  df-uz 11632  df-fz 12269  df-hash 13058  df-vtx 25776  df-iedg 25777  df-uspgr 25938
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator