![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ustbas | Structured version Visualization version GIF version |
Description: Recover the base of an uniform structure 𝑈. ∪ ran UnifOn is to UnifOn what Top is to TopOn. (Contributed by Thierry Arnoux, 16-Nov-2017.) |
Ref | Expression |
---|---|
ustbas.1 | ⊢ 𝑋 = dom ∪ 𝑈 |
Ref | Expression |
---|---|
ustbas | ⊢ (𝑈 ∈ ∪ ran UnifOn ↔ 𝑈 ∈ (UnifOn‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ustfn 22127 | . . . 4 ⊢ UnifOn Fn V | |
2 | fnfun 6101 | . . . 4 ⊢ (UnifOn Fn V → Fun UnifOn) | |
3 | elunirn 6624 | . . . 4 ⊢ (Fun UnifOn → (𝑈 ∈ ∪ ran UnifOn ↔ ∃𝑥 ∈ dom UnifOn𝑈 ∈ (UnifOn‘𝑥))) | |
4 | 1, 2, 3 | mp2b 10 | . . 3 ⊢ (𝑈 ∈ ∪ ran UnifOn ↔ ∃𝑥 ∈ dom UnifOn𝑈 ∈ (UnifOn‘𝑥)) |
5 | ustbas2 22151 | . . . . . . . 8 ⊢ (𝑈 ∈ (UnifOn‘𝑥) → 𝑥 = dom ∪ 𝑈) | |
6 | ustbas.1 | . . . . . . . 8 ⊢ 𝑋 = dom ∪ 𝑈 | |
7 | 5, 6 | syl6eqr 2776 | . . . . . . 7 ⊢ (𝑈 ∈ (UnifOn‘𝑥) → 𝑥 = 𝑋) |
8 | 7 | fveq2d 6308 | . . . . . 6 ⊢ (𝑈 ∈ (UnifOn‘𝑥) → (UnifOn‘𝑥) = (UnifOn‘𝑋)) |
9 | 8 | eleq2d 2789 | . . . . 5 ⊢ (𝑈 ∈ (UnifOn‘𝑥) → (𝑈 ∈ (UnifOn‘𝑥) ↔ 𝑈 ∈ (UnifOn‘𝑋))) |
10 | 9 | ibi 256 | . . . 4 ⊢ (𝑈 ∈ (UnifOn‘𝑥) → 𝑈 ∈ (UnifOn‘𝑋)) |
11 | 10 | rexlimivw 3131 | . . 3 ⊢ (∃𝑥 ∈ dom UnifOn𝑈 ∈ (UnifOn‘𝑥) → 𝑈 ∈ (UnifOn‘𝑋)) |
12 | 4, 11 | sylbi 207 | . 2 ⊢ (𝑈 ∈ ∪ ran UnifOn → 𝑈 ∈ (UnifOn‘𝑋)) |
13 | elrnust 22150 | . 2 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → 𝑈 ∈ ∪ ran UnifOn) | |
14 | 12, 13 | impbii 199 | 1 ⊢ (𝑈 ∈ ∪ ran UnifOn ↔ 𝑈 ∈ (UnifOn‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 = wceq 1596 ∈ wcel 2103 ∃wrex 3015 Vcvv 3304 ∪ cuni 4544 dom cdm 5218 ran crn 5219 Fun wfun 5995 Fn wfn 5996 ‘cfv 6001 UnifOncust 22125 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1835 ax-4 1850 ax-5 1952 ax-6 2018 ax-7 2054 ax-8 2105 ax-9 2112 ax-10 2132 ax-11 2147 ax-12 2160 ax-13 2355 ax-ext 2704 ax-sep 4889 ax-nul 4897 ax-pow 4948 ax-pr 5011 ax-un 7066 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1599 df-ex 1818 df-nf 1823 df-sb 2011 df-eu 2575 df-mo 2576 df-clab 2711 df-cleq 2717 df-clel 2720 df-nfc 2855 df-ne 2897 df-ral 3019 df-rex 3020 df-rab 3023 df-v 3306 df-sbc 3542 df-csb 3640 df-dif 3683 df-un 3685 df-in 3687 df-ss 3694 df-nul 4024 df-if 4195 df-pw 4268 df-sn 4286 df-pr 4288 df-op 4292 df-uni 4545 df-br 4761 df-opab 4821 df-mpt 4838 df-id 5128 df-xp 5224 df-rel 5225 df-cnv 5226 df-co 5227 df-dm 5228 df-rn 5229 df-res 5230 df-iota 5964 df-fun 6003 df-fn 6004 df-fv 6009 df-ust 22126 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |