MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ustbas Structured version   Visualization version   GIF version

Theorem ustbas 22835
Description: Recover the base of an uniform structure 𝑈. ran UnifOn is to UnifOn what Top is to TopOn. (Contributed by Thierry Arnoux, 16-Nov-2017.)
Hypothesis
Ref Expression
ustbas.1 𝑋 = dom 𝑈
Assertion
Ref Expression
ustbas (𝑈 ran UnifOn ↔ 𝑈 ∈ (UnifOn‘𝑋))

Proof of Theorem ustbas
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ustfn 22809 . . . 4 UnifOn Fn V
2 fnfun 6452 . . . 4 (UnifOn Fn V → Fun UnifOn)
3 elunirn 7009 . . . 4 (Fun UnifOn → (𝑈 ran UnifOn ↔ ∃𝑥 ∈ dom UnifOn𝑈 ∈ (UnifOn‘𝑥)))
41, 2, 3mp2b 10 . . 3 (𝑈 ran UnifOn ↔ ∃𝑥 ∈ dom UnifOn𝑈 ∈ (UnifOn‘𝑥))
5 ustbas2 22833 . . . . . . . 8 (𝑈 ∈ (UnifOn‘𝑥) → 𝑥 = dom 𝑈)
6 ustbas.1 . . . . . . . 8 𝑋 = dom 𝑈
75, 6syl6eqr 2874 . . . . . . 7 (𝑈 ∈ (UnifOn‘𝑥) → 𝑥 = 𝑋)
87fveq2d 6673 . . . . . 6 (𝑈 ∈ (UnifOn‘𝑥) → (UnifOn‘𝑥) = (UnifOn‘𝑋))
98eleq2d 2898 . . . . 5 (𝑈 ∈ (UnifOn‘𝑥) → (𝑈 ∈ (UnifOn‘𝑥) ↔ 𝑈 ∈ (UnifOn‘𝑋)))
109ibi 269 . . . 4 (𝑈 ∈ (UnifOn‘𝑥) → 𝑈 ∈ (UnifOn‘𝑋))
1110rexlimivw 3282 . . 3 (∃𝑥 ∈ dom UnifOn𝑈 ∈ (UnifOn‘𝑥) → 𝑈 ∈ (UnifOn‘𝑋))
124, 11sylbi 219 . 2 (𝑈 ran UnifOn → 𝑈 ∈ (UnifOn‘𝑋))
13 elrnust 22832 . 2 (𝑈 ∈ (UnifOn‘𝑋) → 𝑈 ran UnifOn)
1412, 13impbii 211 1 (𝑈 ran UnifOn ↔ 𝑈 ∈ (UnifOn‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wb 208   = wceq 1533  wcel 2110  wrex 3139  Vcvv 3494   cuni 4837  dom cdm 5554  ran crn 5555  Fun wfun 6348   Fn wfn 6349  cfv 6354  UnifOncust 22807
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3772  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4838  df-br 5066  df-opab 5128  df-mpt 5146  df-id 5459  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-iota 6313  df-fun 6356  df-fn 6357  df-fv 6362  df-ust 22808
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator