MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ustneism Structured version   Visualization version   GIF version

Theorem ustneism 21950
Description: For a point 𝐴 in 𝑋, (𝑉 “ {𝐴}) is small enough in (𝑉𝑉). This proposition actually does not require any axiom of the definition of uniform structures. (Contributed by Thierry Arnoux, 18-Nov-2017.)
Assertion
Ref Expression
ustneism ((𝑉 ⊆ (𝑋 × 𝑋) ∧ 𝐴𝑋) → ((𝑉 “ {𝐴}) × (𝑉 “ {𝐴})) ⊆ (𝑉𝑉))

Proof of Theorem ustneism
StepHypRef Expression
1 snnzg 4283 . . . 4 (𝐴𝑋 → {𝐴} ≠ ∅)
21adantl 482 . . 3 ((𝑉 ⊆ (𝑋 × 𝑋) ∧ 𝐴𝑋) → {𝐴} ≠ ∅)
3 xpco 5639 . . 3 ({𝐴} ≠ ∅ → (({𝐴} × (𝑉 “ {𝐴})) ∘ ((𝑉 “ {𝐴}) × {𝐴})) = ((𝑉 “ {𝐴}) × (𝑉 “ {𝐴})))
42, 3syl 17 . 2 ((𝑉 ⊆ (𝑋 × 𝑋) ∧ 𝐴𝑋) → (({𝐴} × (𝑉 “ {𝐴})) ∘ ((𝑉 “ {𝐴}) × {𝐴})) = ((𝑉 “ {𝐴}) × (𝑉 “ {𝐴})))
5 cnvxp 5515 . . . . 5 ({𝐴} × (𝑉 “ {𝐴})) = ((𝑉 “ {𝐴}) × {𝐴})
6 ressn 5635 . . . . . . 7 (𝑉 ↾ {𝐴}) = ({𝐴} × (𝑉 “ {𝐴}))
76cnveqi 5262 . . . . . 6 (𝑉 ↾ {𝐴}) = ({𝐴} × (𝑉 “ {𝐴}))
8 resss 5386 . . . . . . 7 (𝑉 ↾ {𝐴}) ⊆ 𝑉
9 cnvss 5259 . . . . . . 7 ((𝑉 ↾ {𝐴}) ⊆ 𝑉(𝑉 ↾ {𝐴}) ⊆ 𝑉)
108, 9ax-mp 5 . . . . . 6 (𝑉 ↾ {𝐴}) ⊆ 𝑉
117, 10eqsstr3i 3620 . . . . 5 ({𝐴} × (𝑉 “ {𝐴})) ⊆ 𝑉
125, 11eqsstr3i 3620 . . . 4 ((𝑉 “ {𝐴}) × {𝐴}) ⊆ 𝑉
13 coss2 5243 . . . 4 (((𝑉 “ {𝐴}) × {𝐴}) ⊆ 𝑉 → (({𝐴} × (𝑉 “ {𝐴})) ∘ ((𝑉 “ {𝐴}) × {𝐴})) ⊆ (({𝐴} × (𝑉 “ {𝐴})) ∘ 𝑉))
1412, 13mp1i 13 . . 3 ((𝑉 ⊆ (𝑋 × 𝑋) ∧ 𝐴𝑋) → (({𝐴} × (𝑉 “ {𝐴})) ∘ ((𝑉 “ {𝐴}) × {𝐴})) ⊆ (({𝐴} × (𝑉 “ {𝐴})) ∘ 𝑉))
156, 8eqsstr3i 3620 . . . 4 ({𝐴} × (𝑉 “ {𝐴})) ⊆ 𝑉
16 coss1 5242 . . . 4 (({𝐴} × (𝑉 “ {𝐴})) ⊆ 𝑉 → (({𝐴} × (𝑉 “ {𝐴})) ∘ 𝑉) ⊆ (𝑉𝑉))
1715, 16mp1i 13 . . 3 ((𝑉 ⊆ (𝑋 × 𝑋) ∧ 𝐴𝑋) → (({𝐴} × (𝑉 “ {𝐴})) ∘ 𝑉) ⊆ (𝑉𝑉))
1814, 17sstrd 3597 . 2 ((𝑉 ⊆ (𝑋 × 𝑋) ∧ 𝐴𝑋) → (({𝐴} × (𝑉 “ {𝐴})) ∘ ((𝑉 “ {𝐴}) × {𝐴})) ⊆ (𝑉𝑉))
194, 18eqsstr3d 3624 1 ((𝑉 ⊆ (𝑋 × 𝑋) ∧ 𝐴𝑋) → ((𝑉 “ {𝐴}) × (𝑉 “ {𝐴})) ⊆ (𝑉𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wcel 1987  wne 2790  wss 3559  c0 3896  {csn 4153   × cxp 5077  ccnv 5078  cres 5081  cima 5082  ccom 5083
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4746  ax-nul 4754  ax-pr 4872
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3191  df-sbc 3422  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-nul 3897  df-if 4064  df-sn 4154  df-pr 4156  df-op 4160  df-br 4619  df-opab 4679  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092
This theorem is referenced by:  neipcfilu  22023
  Copyright terms: Public domain W3C validator