MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ustund Structured version   Visualization version   GIF version

Theorem ustund 21772
Description: If two intersecting sets 𝐴 and 𝐵 are both small in 𝑉, their union is small in (𝑉↑2). Proposition 1 of [BourbakiTop1] p. II.12. This proposition actually does not require any axiom of the definition of uniform structures. (Contributed by Thierry Arnoux, 17-Nov-2017.)
Hypotheses
Ref Expression
ustund.1 (𝜑 → (𝐴 × 𝐴) ⊆ 𝑉)
ustund.2 (𝜑 → (𝐵 × 𝐵) ⊆ 𝑉)
ustund.3 (𝜑 → (𝐴𝐵) ≠ ∅)
Assertion
Ref Expression
ustund (𝜑 → ((𝐴𝐵) × (𝐴𝐵)) ⊆ (𝑉𝑉))

Proof of Theorem ustund
StepHypRef Expression
1 ustund.3 . . 3 (𝜑 → (𝐴𝐵) ≠ ∅)
2 xpco 5573 . . 3 ((𝐴𝐵) ≠ ∅ → (((𝐴𝐵) × (𝐴𝐵)) ∘ ((𝐴𝐵) × (𝐴𝐵))) = ((𝐴𝐵) × (𝐴𝐵)))
31, 2syl 17 . 2 (𝜑 → (((𝐴𝐵) × (𝐴𝐵)) ∘ ((𝐴𝐵) × (𝐴𝐵))) = ((𝐴𝐵) × (𝐴𝐵)))
4 xpundir 5080 . . . . 5 ((𝐴𝐵) × (𝐴𝐵)) = ((𝐴 × (𝐴𝐵)) ∪ (𝐵 × (𝐴𝐵)))
5 xpindi 5160 . . . . . . 7 (𝐴 × (𝐴𝐵)) = ((𝐴 × 𝐴) ∩ (𝐴 × 𝐵))
6 inss1 3789 . . . . . . . 8 ((𝐴 × 𝐴) ∩ (𝐴 × 𝐵)) ⊆ (𝐴 × 𝐴)
7 ustund.1 . . . . . . . 8 (𝜑 → (𝐴 × 𝐴) ⊆ 𝑉)
86, 7syl5ss 3573 . . . . . . 7 (𝜑 → ((𝐴 × 𝐴) ∩ (𝐴 × 𝐵)) ⊆ 𝑉)
95, 8syl5eqss 3606 . . . . . 6 (𝜑 → (𝐴 × (𝐴𝐵)) ⊆ 𝑉)
10 xpindi 5160 . . . . . . 7 (𝐵 × (𝐴𝐵)) = ((𝐵 × 𝐴) ∩ (𝐵 × 𝐵))
11 inss2 3790 . . . . . . . 8 ((𝐵 × 𝐴) ∩ (𝐵 × 𝐵)) ⊆ (𝐵 × 𝐵)
12 ustund.2 . . . . . . . 8 (𝜑 → (𝐵 × 𝐵) ⊆ 𝑉)
1311, 12syl5ss 3573 . . . . . . 7 (𝜑 → ((𝐵 × 𝐴) ∩ (𝐵 × 𝐵)) ⊆ 𝑉)
1410, 13syl5eqss 3606 . . . . . 6 (𝜑 → (𝐵 × (𝐴𝐵)) ⊆ 𝑉)
159, 14unssd 3745 . . . . 5 (𝜑 → ((𝐴 × (𝐴𝐵)) ∪ (𝐵 × (𝐴𝐵))) ⊆ 𝑉)
164, 15syl5eqss 3606 . . . 4 (𝜑 → ((𝐴𝐵) × (𝐴𝐵)) ⊆ 𝑉)
17 coss2 5183 . . . 4 (((𝐴𝐵) × (𝐴𝐵)) ⊆ 𝑉 → (((𝐴𝐵) × (𝐴𝐵)) ∘ ((𝐴𝐵) × (𝐴𝐵))) ⊆ (((𝐴𝐵) × (𝐴𝐵)) ∘ 𝑉))
1816, 17syl 17 . . 3 (𝜑 → (((𝐴𝐵) × (𝐴𝐵)) ∘ ((𝐴𝐵) × (𝐴𝐵))) ⊆ (((𝐴𝐵) × (𝐴𝐵)) ∘ 𝑉))
19 xpundi 5079 . . . . 5 ((𝐴𝐵) × (𝐴𝐵)) = (((𝐴𝐵) × 𝐴) ∪ ((𝐴𝐵) × 𝐵))
20 xpindir 5161 . . . . . . 7 ((𝐴𝐵) × 𝐴) = ((𝐴 × 𝐴) ∩ (𝐵 × 𝐴))
21 inss1 3789 . . . . . . . 8 ((𝐴 × 𝐴) ∩ (𝐵 × 𝐴)) ⊆ (𝐴 × 𝐴)
2221, 7syl5ss 3573 . . . . . . 7 (𝜑 → ((𝐴 × 𝐴) ∩ (𝐵 × 𝐴)) ⊆ 𝑉)
2320, 22syl5eqss 3606 . . . . . 6 (𝜑 → ((𝐴𝐵) × 𝐴) ⊆ 𝑉)
24 xpindir 5161 . . . . . . 7 ((𝐴𝐵) × 𝐵) = ((𝐴 × 𝐵) ∩ (𝐵 × 𝐵))
25 inss2 3790 . . . . . . . 8 ((𝐴 × 𝐵) ∩ (𝐵 × 𝐵)) ⊆ (𝐵 × 𝐵)
2625, 12syl5ss 3573 . . . . . . 7 (𝜑 → ((𝐴 × 𝐵) ∩ (𝐵 × 𝐵)) ⊆ 𝑉)
2724, 26syl5eqss 3606 . . . . . 6 (𝜑 → ((𝐴𝐵) × 𝐵) ⊆ 𝑉)
2823, 27unssd 3745 . . . . 5 (𝜑 → (((𝐴𝐵) × 𝐴) ∪ ((𝐴𝐵) × 𝐵)) ⊆ 𝑉)
2919, 28syl5eqss 3606 . . . 4 (𝜑 → ((𝐴𝐵) × (𝐴𝐵)) ⊆ 𝑉)
30 coss1 5182 . . . 4 (((𝐴𝐵) × (𝐴𝐵)) ⊆ 𝑉 → (((𝐴𝐵) × (𝐴𝐵)) ∘ 𝑉) ⊆ (𝑉𝑉))
3129, 30syl 17 . . 3 (𝜑 → (((𝐴𝐵) × (𝐴𝐵)) ∘ 𝑉) ⊆ (𝑉𝑉))
3218, 31sstrd 3572 . 2 (𝜑 → (((𝐴𝐵) × (𝐴𝐵)) ∘ ((𝐴𝐵) × (𝐴𝐵))) ⊆ (𝑉𝑉))
333, 32eqsstr3d 3597 1 (𝜑 → ((𝐴𝐵) × (𝐴𝐵)) ⊆ (𝑉𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1474  wne 2774  cun 3532  cin 3533  wss 3534  c0 3868   × cxp 5021  ccom 5027
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1711  ax-4 1726  ax-5 1825  ax-6 1873  ax-7 1920  ax-9 1984  ax-10 2004  ax-11 2019  ax-12 2031  ax-13 2227  ax-ext 2584  ax-sep 4698  ax-nul 4707  ax-pr 4823
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1866  df-clab 2591  df-cleq 2597  df-clel 2600  df-nfc 2734  df-ne 2776  df-ral 2895  df-rex 2896  df-rab 2899  df-v 3169  df-dif 3537  df-un 3539  df-in 3541  df-ss 3548  df-nul 3869  df-if 4031  df-sn 4120  df-pr 4122  df-op 4126  df-br 4573  df-opab 4633  df-xp 5029  df-rel 5030  df-co 5032
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator