MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ustuqtop Structured version   Visualization version   GIF version

Theorem ustuqtop 22857
Description: For a given uniform structure 𝑈 on a set 𝑋, there is a unique topology 𝑗 such that the set ran (𝑣𝑈 ↦ (𝑣 “ {𝑝})) is the filter of the neighborhoods of 𝑝 for that topology. Proposition 1 of [BourbakiTop1] p. II.3. (Contributed by Thierry Arnoux, 11-Jan-2018.)
Hypothesis
Ref Expression
utopustuq.1 𝑁 = (𝑝𝑋 ↦ ran (𝑣𝑈 ↦ (𝑣 “ {𝑝})))
Assertion
Ref Expression
ustuqtop (𝑈 ∈ (UnifOn‘𝑋) → ∃!𝑗 ∈ (TopOn‘𝑋)∀𝑝𝑋 (𝑁𝑝) = ((nei‘𝑗)‘{𝑝}))
Distinct variable groups:   𝑣,𝑝,𝑈   𝑋,𝑝,𝑣,𝑗   𝑗,𝑁,𝑝   𝑣,𝑗,𝑈   𝑗,𝑋
Allowed substitution hint:   𝑁(𝑣)

Proof of Theorem ustuqtop
Dummy variables 𝑎 𝑏 𝑐 𝑟 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6672 . . . . . . 7 (𝑝 = 𝑟 → (𝑁𝑝) = (𝑁𝑟))
21eleq2d 2900 . . . . . 6 (𝑝 = 𝑟 → (𝑐 ∈ (𝑁𝑝) ↔ 𝑐 ∈ (𝑁𝑟)))
32cbvralvw 3451 . . . . 5 (∀𝑝𝑐 𝑐 ∈ (𝑁𝑝) ↔ ∀𝑟𝑐 𝑐 ∈ (𝑁𝑟))
4 eleq1w 2897 . . . . . 6 (𝑐 = 𝑎 → (𝑐 ∈ (𝑁𝑝) ↔ 𝑎 ∈ (𝑁𝑝)))
54raleqbi1dv 3405 . . . . 5 (𝑐 = 𝑎 → (∀𝑝𝑐 𝑐 ∈ (𝑁𝑝) ↔ ∀𝑝𝑎 𝑎 ∈ (𝑁𝑝)))
63, 5syl5bbr 287 . . . 4 (𝑐 = 𝑎 → (∀𝑟𝑐 𝑐 ∈ (𝑁𝑟) ↔ ∀𝑝𝑎 𝑎 ∈ (𝑁𝑝)))
76cbvrabv 3493 . . 3 {𝑐 ∈ 𝒫 𝑋 ∣ ∀𝑟𝑐 𝑐 ∈ (𝑁𝑟)} = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑝𝑎 𝑎 ∈ (𝑁𝑝)}
8 utopustuq.1 . . . 4 𝑁 = (𝑝𝑋 ↦ ran (𝑣𝑈 ↦ (𝑣 “ {𝑝})))
98ustuqtop0 22851 . . 3 (𝑈 ∈ (UnifOn‘𝑋) → 𝑁:𝑋⟶𝒫 𝒫 𝑋)
108ustuqtop1 22852 . . 3 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎𝑏𝑏𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) → 𝑏 ∈ (𝑁𝑝))
118ustuqtop2 22853 . . 3 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) → (fi‘(𝑁𝑝)) ⊆ (𝑁𝑝))
128ustuqtop3 22854 . . 3 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) → 𝑝𝑎)
138ustuqtop4 22855 . . 3 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) → ∃𝑏 ∈ (𝑁𝑝)∀𝑥𝑏 𝑎 ∈ (𝑁𝑥))
148ustuqtop5 22856 . . 3 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) → 𝑋 ∈ (𝑁𝑝))
157, 9, 10, 11, 12, 13, 14neiptopreu 21743 . 2 (𝑈 ∈ (UnifOn‘𝑋) → ∃!𝑗 ∈ (TopOn‘𝑋)𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝})))
169feqmptd 6735 . . . . 5 (𝑈 ∈ (UnifOn‘𝑋) → 𝑁 = (𝑝𝑋 ↦ (𝑁𝑝)))
1716eqeq1d 2825 . . . 4 (𝑈 ∈ (UnifOn‘𝑋) → (𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝})) ↔ (𝑝𝑋 ↦ (𝑁𝑝)) = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝}))))
18 fvex 6685 . . . . . 6 (𝑁𝑝) ∈ V
1918rgenw 3152 . . . . 5 𝑝𝑋 (𝑁𝑝) ∈ V
20 mpteqb 6789 . . . . 5 (∀𝑝𝑋 (𝑁𝑝) ∈ V → ((𝑝𝑋 ↦ (𝑁𝑝)) = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝})) ↔ ∀𝑝𝑋 (𝑁𝑝) = ((nei‘𝑗)‘{𝑝})))
2119, 20ax-mp 5 . . . 4 ((𝑝𝑋 ↦ (𝑁𝑝)) = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝})) ↔ ∀𝑝𝑋 (𝑁𝑝) = ((nei‘𝑗)‘{𝑝}))
2217, 21syl6bb 289 . . 3 (𝑈 ∈ (UnifOn‘𝑋) → (𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝})) ↔ ∀𝑝𝑋 (𝑁𝑝) = ((nei‘𝑗)‘{𝑝})))
2322reubidv 3391 . 2 (𝑈 ∈ (UnifOn‘𝑋) → (∃!𝑗 ∈ (TopOn‘𝑋)𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝})) ↔ ∃!𝑗 ∈ (TopOn‘𝑋)∀𝑝𝑋 (𝑁𝑝) = ((nei‘𝑗)‘{𝑝})))
2415, 23mpbid 234 1 (𝑈 ∈ (UnifOn‘𝑋) → ∃!𝑗 ∈ (TopOn‘𝑋)∀𝑝𝑋 (𝑁𝑝) = ((nei‘𝑗)‘{𝑝}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208   = wceq 1537  wcel 2114  wral 3140  ∃!wreu 3142  {crab 3144  Vcvv 3496  𝒫 cpw 4541  {csn 4569  cmpt 5148  ran crn 5558  cima 5560  cfv 6357  TopOnctopon 21520  neicnei 21707  UnifOncust 22810
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-en 8512  df-fin 8515  df-fi 8877  df-top 21504  df-topon 21521  df-ntr 21630  df-nei 21708  df-ust 22811
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator