MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ustuqtop1 Structured version   Visualization version   GIF version

Theorem ustuqtop1 21950
Description: Lemma for ustuqtop 21955, similar to ssnei2 20825. (Contributed by Thierry Arnoux, 11-Jan-2018.)
Hypothesis
Ref Expression
utopustuq.1 𝑁 = (𝑝𝑋 ↦ ran (𝑣𝑈 ↦ (𝑣 “ {𝑝})))
Assertion
Ref Expression
ustuqtop1 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎𝑏𝑏𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) → 𝑏 ∈ (𝑁𝑝))
Distinct variable groups:   𝑣,𝑝,𝑈   𝑋,𝑝,𝑣   𝑎,𝑏,𝑝,𝑁   𝑣,𝑎,𝑈,𝑏   𝑋,𝑎,𝑏
Allowed substitution hint:   𝑁(𝑣)

Proof of Theorem ustuqtop1
Dummy variables 𝑤 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl1l 1110 . . . . . 6 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎𝑏𝑏𝑋) ∧ (𝑎 ∈ (𝑁𝑝) ∧ 𝑤𝑈𝑎 = (𝑤 “ {𝑝}))) → 𝑈 ∈ (UnifOn‘𝑋))
213anassrs 1287 . . . . 5 ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎𝑏𝑏𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) ∧ 𝑤𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) → 𝑈 ∈ (UnifOn‘𝑋))
3 simplr 791 . . . . 5 ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎𝑏𝑏𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) ∧ 𝑤𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) → 𝑤𝑈)
4 ustssxp 21913 . . . . . . 7 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑤𝑈) → 𝑤 ⊆ (𝑋 × 𝑋))
52, 3, 4syl2anc 692 . . . . . 6 ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎𝑏𝑏𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) ∧ 𝑤𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) → 𝑤 ⊆ (𝑋 × 𝑋))
6 simpl1r 1111 . . . . . . . . 9 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎𝑏𝑏𝑋) ∧ (𝑎 ∈ (𝑁𝑝) ∧ 𝑤𝑈𝑎 = (𝑤 “ {𝑝}))) → 𝑝𝑋)
763anassrs 1287 . . . . . . . 8 ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎𝑏𝑏𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) ∧ 𝑤𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) → 𝑝𝑋)
87snssd 4314 . . . . . . 7 ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎𝑏𝑏𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) ∧ 𝑤𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) → {𝑝} ⊆ 𝑋)
9 simpl3 1064 . . . . . . . 8 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎𝑏𝑏𝑋) ∧ (𝑎 ∈ (𝑁𝑝) ∧ 𝑤𝑈𝑎 = (𝑤 “ {𝑝}))) → 𝑏𝑋)
1093anassrs 1287 . . . . . . 7 ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎𝑏𝑏𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) ∧ 𝑤𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) → 𝑏𝑋)
11 xpss12 5191 . . . . . . 7 (({𝑝} ⊆ 𝑋𝑏𝑋) → ({𝑝} × 𝑏) ⊆ (𝑋 × 𝑋))
128, 10, 11syl2anc 692 . . . . . 6 ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎𝑏𝑏𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) ∧ 𝑤𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) → ({𝑝} × 𝑏) ⊆ (𝑋 × 𝑋))
135, 12unssd 3772 . . . . 5 ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎𝑏𝑏𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) ∧ 𝑤𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) → (𝑤 ∪ ({𝑝} × 𝑏)) ⊆ (𝑋 × 𝑋))
14 ssun1 3759 . . . . . 6 𝑤 ⊆ (𝑤 ∪ ({𝑝} × 𝑏))
1514a1i 11 . . . . 5 ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎𝑏𝑏𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) ∧ 𝑤𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) → 𝑤 ⊆ (𝑤 ∪ ({𝑝} × 𝑏)))
16 ustssel 21914 . . . . . 6 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑤𝑈 ∧ (𝑤 ∪ ({𝑝} × 𝑏)) ⊆ (𝑋 × 𝑋)) → (𝑤 ⊆ (𝑤 ∪ ({𝑝} × 𝑏)) → (𝑤 ∪ ({𝑝} × 𝑏)) ∈ 𝑈))
1716imp 445 . . . . 5 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑤𝑈 ∧ (𝑤 ∪ ({𝑝} × 𝑏)) ⊆ (𝑋 × 𝑋)) ∧ 𝑤 ⊆ (𝑤 ∪ ({𝑝} × 𝑏))) → (𝑤 ∪ ({𝑝} × 𝑏)) ∈ 𝑈)
182, 3, 13, 15, 17syl31anc 1326 . . . 4 ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎𝑏𝑏𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) ∧ 𝑤𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) → (𝑤 ∪ ({𝑝} × 𝑏)) ∈ 𝑈)
19 simpl2 1063 . . . . . 6 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎𝑏𝑏𝑋) ∧ (𝑎 ∈ (𝑁𝑝) ∧ 𝑤𝑈𝑎 = (𝑤 “ {𝑝}))) → 𝑎𝑏)
20193anassrs 1287 . . . . 5 ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎𝑏𝑏𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) ∧ 𝑤𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) → 𝑎𝑏)
21 ssequn1 3766 . . . . . . 7 (𝑎𝑏 ↔ (𝑎𝑏) = 𝑏)
2221biimpi 206 . . . . . 6 (𝑎𝑏 → (𝑎𝑏) = 𝑏)
23 id 22 . . . . . . . 8 (𝑎 = (𝑤 “ {𝑝}) → 𝑎 = (𝑤 “ {𝑝}))
24 inidm 3805 . . . . . . . . . . 11 ({𝑝} ∩ {𝑝}) = {𝑝}
25 vex 3194 . . . . . . . . . . . 12 𝑝 ∈ V
2625snnz 4284 . . . . . . . . . . 11 {𝑝} ≠ ∅
2724, 26eqnetri 2866 . . . . . . . . . 10 ({𝑝} ∩ {𝑝}) ≠ ∅
28 xpima2 5541 . . . . . . . . . 10 (({𝑝} ∩ {𝑝}) ≠ ∅ → (({𝑝} × 𝑏) “ {𝑝}) = 𝑏)
2927, 28mp1i 13 . . . . . . . . 9 (𝑎 = (𝑤 “ {𝑝}) → (({𝑝} × 𝑏) “ {𝑝}) = 𝑏)
3029eqcomd 2632 . . . . . . . 8 (𝑎 = (𝑤 “ {𝑝}) → 𝑏 = (({𝑝} × 𝑏) “ {𝑝}))
3123, 30uneq12d 3751 . . . . . . 7 (𝑎 = (𝑤 “ {𝑝}) → (𝑎𝑏) = ((𝑤 “ {𝑝}) ∪ (({𝑝} × 𝑏) “ {𝑝})))
32 imaundir 5509 . . . . . . 7 ((𝑤 ∪ ({𝑝} × 𝑏)) “ {𝑝}) = ((𝑤 “ {𝑝}) ∪ (({𝑝} × 𝑏) “ {𝑝}))
3331, 32syl6eqr 2678 . . . . . 6 (𝑎 = (𝑤 “ {𝑝}) → (𝑎𝑏) = ((𝑤 ∪ ({𝑝} × 𝑏)) “ {𝑝}))
3422, 33sylan9req 2681 . . . . 5 ((𝑎𝑏𝑎 = (𝑤 “ {𝑝})) → 𝑏 = ((𝑤 ∪ ({𝑝} × 𝑏)) “ {𝑝}))
3520, 34sylancom 700 . . . 4 ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎𝑏𝑏𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) ∧ 𝑤𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) → 𝑏 = ((𝑤 ∪ ({𝑝} × 𝑏)) “ {𝑝}))
36 imaeq1 5424 . . . . . 6 (𝑢 = (𝑤 ∪ ({𝑝} × 𝑏)) → (𝑢 “ {𝑝}) = ((𝑤 ∪ ({𝑝} × 𝑏)) “ {𝑝}))
3736eqeq2d 2636 . . . . 5 (𝑢 = (𝑤 ∪ ({𝑝} × 𝑏)) → (𝑏 = (𝑢 “ {𝑝}) ↔ 𝑏 = ((𝑤 ∪ ({𝑝} × 𝑏)) “ {𝑝})))
3837rspcev 3300 . . . 4 (((𝑤 ∪ ({𝑝} × 𝑏)) ∈ 𝑈𝑏 = ((𝑤 ∪ ({𝑝} × 𝑏)) “ {𝑝})) → ∃𝑢𝑈 𝑏 = (𝑢 “ {𝑝}))
3918, 35, 38syl2anc 692 . . 3 ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎𝑏𝑏𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) ∧ 𝑤𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) → ∃𝑢𝑈 𝑏 = (𝑢 “ {𝑝}))
40 vex 3194 . . . . . 6 𝑎 ∈ V
41 utopustuq.1 . . . . . . 7 𝑁 = (𝑝𝑋 ↦ ran (𝑣𝑈 ↦ (𝑣 “ {𝑝})))
4241ustuqtoplem 21948 . . . . . 6 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎 ∈ V) → (𝑎 ∈ (𝑁𝑝) ↔ ∃𝑤𝑈 𝑎 = (𝑤 “ {𝑝})))
4340, 42mpan2 706 . . . . 5 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) → (𝑎 ∈ (𝑁𝑝) ↔ ∃𝑤𝑈 𝑎 = (𝑤 “ {𝑝})))
4443biimpa 501 . . . 4 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) → ∃𝑤𝑈 𝑎 = (𝑤 “ {𝑝}))
45443ad2antl1 1221 . . 3 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎𝑏𝑏𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) → ∃𝑤𝑈 𝑎 = (𝑤 “ {𝑝}))
4639, 45r19.29a 3076 . 2 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎𝑏𝑏𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) → ∃𝑢𝑈 𝑏 = (𝑢 “ {𝑝}))
47 vex 3194 . . . . 5 𝑏 ∈ V
4841ustuqtoplem 21948 . . . . 5 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑏 ∈ V) → (𝑏 ∈ (𝑁𝑝) ↔ ∃𝑢𝑈 𝑏 = (𝑢 “ {𝑝})))
4947, 48mpan2 706 . . . 4 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) → (𝑏 ∈ (𝑁𝑝) ↔ ∃𝑢𝑈 𝑏 = (𝑢 “ {𝑝})))
50493ad2ant1 1080 . . 3 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎𝑏𝑏𝑋) → (𝑏 ∈ (𝑁𝑝) ↔ ∃𝑢𝑈 𝑏 = (𝑢 “ {𝑝})))
5150adantr 481 . 2 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎𝑏𝑏𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) → (𝑏 ∈ (𝑁𝑝) ↔ ∃𝑢𝑈 𝑏 = (𝑢 “ {𝑝})))
5246, 51mpbird 247 1 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎𝑏𝑏𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) → 𝑏 ∈ (𝑁𝑝))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1992  wne 2796  wrex 2913  Vcvv 3191  cun 3558  cin 3559  wss 3560  c0 3896  {csn 4153  cmpt 4678   × cxp 5077  ran crn 5080  cima 5082  cfv 5850  UnifOncust 21908
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-op 4160  df-uni 4408  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-id 4994  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-ust 21909
This theorem is referenced by:  ustuqtop4  21953  ustuqtop  21955  utopsnneiplem  21956
  Copyright terms: Public domain W3C validator