MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uvcresum Structured version   Visualization version   GIF version

Theorem uvcresum 20054
Description: Any element of a free module can be expressed as a finite linear combination of unit vectors. (Contributed by Stefan O'Rear, 3-Feb-2015.) (Proof shortened by Mario Carneiro, 5-Jul-2015.)
Hypotheses
Ref Expression
uvcresum.u 𝑈 = (𝑅 unitVec 𝐼)
uvcresum.y 𝑌 = (𝑅 freeLMod 𝐼)
uvcresum.b 𝐵 = (Base‘𝑌)
uvcresum.v · = ( ·𝑠𝑌)
Assertion
Ref Expression
uvcresum ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → 𝑋 = (𝑌 Σg (𝑋𝑓 · 𝑈)))

Proof of Theorem uvcresum
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uvcresum.y . . . . . . 7 𝑌 = (𝑅 freeLMod 𝐼)
2 eqid 2621 . . . . . . 7 (Base‘𝑅) = (Base‘𝑅)
3 uvcresum.b . . . . . . 7 𝐵 = (Base‘𝑌)
41, 2, 3frlmbasf 20026 . . . . . 6 ((𝐼𝑊𝑋𝐵) → 𝑋:𝐼⟶(Base‘𝑅))
543adant1 1077 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → 𝑋:𝐼⟶(Base‘𝑅))
65feqmptd 6208 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → 𝑋 = (𝑎𝐼 ↦ (𝑋𝑎)))
7 eqid 2621 . . . . . . 7 (0g𝑅) = (0g𝑅)
8 simpl1 1062 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑎𝐼) → 𝑅 ∈ Ring)
9 ringmnd 18480 . . . . . . . 8 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
108, 9syl 17 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑎𝐼) → 𝑅 ∈ Mnd)
11 simpl2 1063 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑎𝐼) → 𝐼𝑊)
12 simpr 477 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑎𝐼) → 𝑎𝐼)
13 simpl2 1063 . . . . . . . . . . . 12 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑏𝐼) → 𝐼𝑊)
145ffvelrnda 6317 . . . . . . . . . . . . . . 15 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑏𝐼) → (𝑋𝑏) ∈ (Base‘𝑅))
15 uvcresum.u . . . . . . . . . . . . . . . . . 18 𝑈 = (𝑅 unitVec 𝐼)
1615, 1, 3uvcff 20052 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → 𝑈:𝐼𝐵)
17163adant3 1079 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → 𝑈:𝐼𝐵)
1817ffvelrnda 6317 . . . . . . . . . . . . . . 15 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑏𝐼) → (𝑈𝑏) ∈ 𝐵)
19 uvcresum.v . . . . . . . . . . . . . . 15 · = ( ·𝑠𝑌)
20 eqid 2621 . . . . . . . . . . . . . . 15 (.r𝑅) = (.r𝑅)
211, 3, 2, 13, 14, 18, 19, 20frlmvscafval 20031 . . . . . . . . . . . . . 14 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑏𝐼) → ((𝑋𝑏) · (𝑈𝑏)) = ((𝐼 × {(𝑋𝑏)}) ∘𝑓 (.r𝑅)(𝑈𝑏)))
2214adantr 481 . . . . . . . . . . . . . . 15 ((((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑏𝐼) ∧ 𝑎𝐼) → (𝑋𝑏) ∈ (Base‘𝑅))
231, 2, 3frlmbasf 20026 . . . . . . . . . . . . . . . . 17 ((𝐼𝑊 ∧ (𝑈𝑏) ∈ 𝐵) → (𝑈𝑏):𝐼⟶(Base‘𝑅))
2413, 18, 23syl2anc 692 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑏𝐼) → (𝑈𝑏):𝐼⟶(Base‘𝑅))
2524ffvelrnda 6317 . . . . . . . . . . . . . . 15 ((((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑏𝐼) ∧ 𝑎𝐼) → ((𝑈𝑏)‘𝑎) ∈ (Base‘𝑅))
26 fconstmpt 5125 . . . . . . . . . . . . . . . 16 (𝐼 × {(𝑋𝑏)}) = (𝑎𝐼 ↦ (𝑋𝑏))
2726a1i 11 . . . . . . . . . . . . . . 15 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑏𝐼) → (𝐼 × {(𝑋𝑏)}) = (𝑎𝐼 ↦ (𝑋𝑏)))
2824feqmptd 6208 . . . . . . . . . . . . . . 15 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑏𝐼) → (𝑈𝑏) = (𝑎𝐼 ↦ ((𝑈𝑏)‘𝑎)))
2913, 22, 25, 27, 28offval2 6870 . . . . . . . . . . . . . 14 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑏𝐼) → ((𝐼 × {(𝑋𝑏)}) ∘𝑓 (.r𝑅)(𝑈𝑏)) = (𝑎𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎))))
3021, 29eqtrd 2655 . . . . . . . . . . . . 13 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑏𝐼) → ((𝑋𝑏) · (𝑈𝑏)) = (𝑎𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎))))
311frlmlmod 20015 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → 𝑌 ∈ LMod)
32313adant3 1079 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → 𝑌 ∈ LMod)
3332adantr 481 . . . . . . . . . . . . . 14 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑏𝐼) → 𝑌 ∈ LMod)
341frlmsca 20019 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → 𝑅 = (Scalar‘𝑌))
35343adant3 1079 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → 𝑅 = (Scalar‘𝑌))
3635fveq2d 6154 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → (Base‘𝑅) = (Base‘(Scalar‘𝑌)))
3736adantr 481 . . . . . . . . . . . . . . 15 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑏𝐼) → (Base‘𝑅) = (Base‘(Scalar‘𝑌)))
3814, 37eleqtrd 2700 . . . . . . . . . . . . . 14 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑏𝐼) → (𝑋𝑏) ∈ (Base‘(Scalar‘𝑌)))
39 eqid 2621 . . . . . . . . . . . . . . 15 (Scalar‘𝑌) = (Scalar‘𝑌)
40 eqid 2621 . . . . . . . . . . . . . . 15 (Base‘(Scalar‘𝑌)) = (Base‘(Scalar‘𝑌))
413, 39, 19, 40lmodvscl 18804 . . . . . . . . . . . . . 14 ((𝑌 ∈ LMod ∧ (𝑋𝑏) ∈ (Base‘(Scalar‘𝑌)) ∧ (𝑈𝑏) ∈ 𝐵) → ((𝑋𝑏) · (𝑈𝑏)) ∈ 𝐵)
4233, 38, 18, 41syl3anc 1323 . . . . . . . . . . . . 13 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑏𝐼) → ((𝑋𝑏) · (𝑈𝑏)) ∈ 𝐵)
4330, 42eqeltrrd 2699 . . . . . . . . . . . 12 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑏𝐼) → (𝑎𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎))) ∈ 𝐵)
441, 2, 3frlmbasf 20026 . . . . . . . . . . . 12 ((𝐼𝑊 ∧ (𝑎𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎))) ∈ 𝐵) → (𝑎𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎))):𝐼⟶(Base‘𝑅))
4513, 43, 44syl2anc 692 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑏𝐼) → (𝑎𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎))):𝐼⟶(Base‘𝑅))
46 eqid 2621 . . . . . . . . . . . 12 (𝑎𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎))) = (𝑎𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎)))
4746fmpt 6339 . . . . . . . . . . 11 (∀𝑎𝐼 ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎)) ∈ (Base‘𝑅) ↔ (𝑎𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎))):𝐼⟶(Base‘𝑅))
4845, 47sylibr 224 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑏𝐼) → ∀𝑎𝐼 ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎)) ∈ (Base‘𝑅))
4948r19.21bi 2927 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑏𝐼) ∧ 𝑎𝐼) → ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎)) ∈ (Base‘𝑅))
5049an32s 845 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑎𝐼) ∧ 𝑏𝐼) → ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎)) ∈ (Base‘𝑅))
51 eqid 2621 . . . . . . . 8 (𝑏𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎))) = (𝑏𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎)))
5250, 51fmptd 6343 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑎𝐼) → (𝑏𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎))):𝐼⟶(Base‘𝑅))
5383ad2ant1 1080 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑎𝐼) ∧ 𝑏𝐼𝑏𝑎) → 𝑅 ∈ Ring)
54113ad2ant1 1080 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑎𝐼) ∧ 𝑏𝐼𝑏𝑎) → 𝐼𝑊)
55 simp2 1060 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑎𝐼) ∧ 𝑏𝐼𝑏𝑎) → 𝑏𝐼)
56123ad2ant1 1080 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑎𝐼) ∧ 𝑏𝐼𝑏𝑎) → 𝑎𝐼)
57 simp3 1061 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑎𝐼) ∧ 𝑏𝐼𝑏𝑎) → 𝑏𝑎)
5815, 53, 54, 55, 56, 57, 7uvcvv0 20051 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑎𝐼) ∧ 𝑏𝐼𝑏𝑎) → ((𝑈𝑏)‘𝑎) = (0g𝑅))
5958oveq2d 6623 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑎𝐼) ∧ 𝑏𝐼𝑏𝑎) → ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎)) = ((𝑋𝑏)(.r𝑅)(0g𝑅)))
6014adantlr 750 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑎𝐼) ∧ 𝑏𝐼) → (𝑋𝑏) ∈ (Base‘𝑅))
61603adant3 1079 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑎𝐼) ∧ 𝑏𝐼𝑏𝑎) → (𝑋𝑏) ∈ (Base‘𝑅))
622, 20, 7ringrz 18512 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ (𝑋𝑏) ∈ (Base‘𝑅)) → ((𝑋𝑏)(.r𝑅)(0g𝑅)) = (0g𝑅))
6353, 61, 62syl2anc 692 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑎𝐼) ∧ 𝑏𝐼𝑏𝑎) → ((𝑋𝑏)(.r𝑅)(0g𝑅)) = (0g𝑅))
6459, 63eqtrd 2655 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑎𝐼) ∧ 𝑏𝐼𝑏𝑎) → ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎)) = (0g𝑅))
6564, 11suppsssn 7278 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑎𝐼) → ((𝑏𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎))) supp (0g𝑅)) ⊆ {𝑎})
662, 7, 10, 11, 12, 52, 65gsumpt 18285 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑎𝐼) → (𝑅 Σg (𝑏𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎)))) = ((𝑏𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎)))‘𝑎))
67 fveq2 6150 . . . . . . . . . 10 (𝑏 = 𝑎 → (𝑋𝑏) = (𝑋𝑎))
68 fveq2 6150 . . . . . . . . . . 11 (𝑏 = 𝑎 → (𝑈𝑏) = (𝑈𝑎))
6968fveq1d 6152 . . . . . . . . . 10 (𝑏 = 𝑎 → ((𝑈𝑏)‘𝑎) = ((𝑈𝑎)‘𝑎))
7067, 69oveq12d 6625 . . . . . . . . 9 (𝑏 = 𝑎 → ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎)) = ((𝑋𝑎)(.r𝑅)((𝑈𝑎)‘𝑎)))
71 ovex 6635 . . . . . . . . 9 ((𝑋𝑎)(.r𝑅)((𝑈𝑎)‘𝑎)) ∈ V
7270, 51, 71fvmpt 6241 . . . . . . . 8 (𝑎𝐼 → ((𝑏𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎)))‘𝑎) = ((𝑋𝑎)(.r𝑅)((𝑈𝑎)‘𝑎)))
7372adantl 482 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑎𝐼) → ((𝑏𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎)))‘𝑎) = ((𝑋𝑎)(.r𝑅)((𝑈𝑎)‘𝑎)))
74 eqid 2621 . . . . . . . . . 10 (1r𝑅) = (1r𝑅)
7515, 8, 11, 12, 74uvcvv1 20050 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑎𝐼) → ((𝑈𝑎)‘𝑎) = (1r𝑅))
7675oveq2d 6623 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑎𝐼) → ((𝑋𝑎)(.r𝑅)((𝑈𝑎)‘𝑎)) = ((𝑋𝑎)(.r𝑅)(1r𝑅)))
775ffvelrnda 6317 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑎𝐼) → (𝑋𝑎) ∈ (Base‘𝑅))
782, 20, 74ringridm 18496 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ (𝑋𝑎) ∈ (Base‘𝑅)) → ((𝑋𝑎)(.r𝑅)(1r𝑅)) = (𝑋𝑎))
798, 77, 78syl2anc 692 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑎𝐼) → ((𝑋𝑎)(.r𝑅)(1r𝑅)) = (𝑋𝑎))
8076, 79eqtrd 2655 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑎𝐼) → ((𝑋𝑎)(.r𝑅)((𝑈𝑎)‘𝑎)) = (𝑋𝑎))
8173, 80eqtrd 2655 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑎𝐼) → ((𝑏𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎)))‘𝑎) = (𝑋𝑎))
8266, 81eqtrd 2655 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑎𝐼) → (𝑅 Σg (𝑏𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎)))) = (𝑋𝑎))
8382mpteq2dva 4706 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → (𝑎𝐼 ↦ (𝑅 Σg (𝑏𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎))))) = (𝑎𝐼 ↦ (𝑋𝑎)))
846, 83eqtr4d 2658 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → 𝑋 = (𝑎𝐼 ↦ (𝑅 Σg (𝑏𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎))))))
85 eqid 2621 . . . 4 (0g𝑌) = (0g𝑌)
86 simp2 1060 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → 𝐼𝑊)
87 simp1 1059 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → 𝑅 ∈ Ring)
88 mptexg 6441 . . . . . 6 (𝐼𝑊 → (𝑏𝐼 ↦ (𝑎𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎)))) ∈ V)
89883ad2ant2 1081 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → (𝑏𝐼 ↦ (𝑎𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎)))) ∈ V)
90 funmpt 5886 . . . . . 6 Fun (𝑏𝐼 ↦ (𝑎𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎))))
9190a1i 11 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → Fun (𝑏𝐼 ↦ (𝑎𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎)))))
92 fvex 6160 . . . . . 6 (0g𝑌) ∈ V
9392a1i 11 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → (0g𝑌) ∈ V)
941, 7, 3frlmbasfsupp 20024 . . . . . . 7 ((𝐼𝑊𝑋𝐵) → 𝑋 finSupp (0g𝑅))
95943adant1 1077 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → 𝑋 finSupp (0g𝑅))
9695fsuppimpd 8229 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → (𝑋 supp (0g𝑅)) ∈ Fin)
9735eqcomd 2627 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → (Scalar‘𝑌) = 𝑅)
9897fveq2d 6154 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → (0g‘(Scalar‘𝑌)) = (0g𝑅))
9998oveq2d 6623 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → (𝑋 supp (0g‘(Scalar‘𝑌))) = (𝑋 supp (0g𝑅)))
100 ssid 3605 . . . . . . . . . 10 (𝑋 supp (0g𝑅)) ⊆ (𝑋 supp (0g𝑅))
10199, 100syl6eqss 3636 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → (𝑋 supp (0g‘(Scalar‘𝑌))) ⊆ (𝑋 supp (0g𝑅)))
102 fvex 6160 . . . . . . . . . 10 (0g‘(Scalar‘𝑌)) ∈ V
103102a1i 11 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → (0g‘(Scalar‘𝑌)) ∈ V)
1045, 101, 86, 103suppssr 7274 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑏 ∈ (𝐼 ∖ (𝑋 supp (0g𝑅)))) → (𝑋𝑏) = (0g‘(Scalar‘𝑌)))
105104oveq1d 6622 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑏 ∈ (𝐼 ∖ (𝑋 supp (0g𝑅)))) → ((𝑋𝑏) · (𝑈𝑏)) = ((0g‘(Scalar‘𝑌)) · (𝑈𝑏)))
106 eldifi 3712 . . . . . . . 8 (𝑏 ∈ (𝐼 ∖ (𝑋 supp (0g𝑅))) → 𝑏𝐼)
107106, 30sylan2 491 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑏 ∈ (𝐼 ∖ (𝑋 supp (0g𝑅)))) → ((𝑋𝑏) · (𝑈𝑏)) = (𝑎𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎))))
10832adantr 481 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑏 ∈ (𝐼 ∖ (𝑋 supp (0g𝑅)))) → 𝑌 ∈ LMod)
109106, 18sylan2 491 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑏 ∈ (𝐼 ∖ (𝑋 supp (0g𝑅)))) → (𝑈𝑏) ∈ 𝐵)
110 eqid 2621 . . . . . . . . 9 (0g‘(Scalar‘𝑌)) = (0g‘(Scalar‘𝑌))
1113, 39, 19, 110, 85lmod0vs 18820 . . . . . . . 8 ((𝑌 ∈ LMod ∧ (𝑈𝑏) ∈ 𝐵) → ((0g‘(Scalar‘𝑌)) · (𝑈𝑏)) = (0g𝑌))
112108, 109, 111syl2anc 692 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑏 ∈ (𝐼 ∖ (𝑋 supp (0g𝑅)))) → ((0g‘(Scalar‘𝑌)) · (𝑈𝑏)) = (0g𝑌))
113105, 107, 1123eqtr3d 2663 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑏 ∈ (𝐼 ∖ (𝑋 supp (0g𝑅)))) → (𝑎𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎))) = (0g𝑌))
114113, 86suppss2 7277 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → ((𝑏𝐼 ↦ (𝑎𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎)))) supp (0g𝑌)) ⊆ (𝑋 supp (0g𝑅)))
115 suppssfifsupp 8237 . . . . 5 ((((𝑏𝐼 ↦ (𝑎𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎)))) ∈ V ∧ Fun (𝑏𝐼 ↦ (𝑎𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎)))) ∧ (0g𝑌) ∈ V) ∧ ((𝑋 supp (0g𝑅)) ∈ Fin ∧ ((𝑏𝐼 ↦ (𝑎𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎)))) supp (0g𝑌)) ⊆ (𝑋 supp (0g𝑅)))) → (𝑏𝐼 ↦ (𝑎𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎)))) finSupp (0g𝑌))
11689, 91, 93, 96, 114, 115syl32anc 1331 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → (𝑏𝐼 ↦ (𝑎𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎)))) finSupp (0g𝑌))
1171, 3, 85, 86, 86, 87, 43, 116frlmgsum 20033 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → (𝑌 Σg (𝑏𝐼 ↦ (𝑎𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎))))) = (𝑎𝐼 ↦ (𝑅 Σg (𝑏𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎))))))
11884, 117eqtr4d 2658 . 2 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → 𝑋 = (𝑌 Σg (𝑏𝐼 ↦ (𝑎𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎))))))
1195feqmptd 6208 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → 𝑋 = (𝑏𝐼 ↦ (𝑋𝑏)))
12017feqmptd 6208 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → 𝑈 = (𝑏𝐼 ↦ (𝑈𝑏)))
12186, 14, 18, 119, 120offval2 6870 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → (𝑋𝑓 · 𝑈) = (𝑏𝐼 ↦ ((𝑋𝑏) · (𝑈𝑏))))
12230mpteq2dva 4706 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → (𝑏𝐼 ↦ ((𝑋𝑏) · (𝑈𝑏))) = (𝑏𝐼 ↦ (𝑎𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎)))))
123121, 122eqtrd 2655 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → (𝑋𝑓 · 𝑈) = (𝑏𝐼 ↦ (𝑎𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎)))))
124123oveq2d 6623 . 2 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → (𝑌 Σg (𝑋𝑓 · 𝑈)) = (𝑌 Σg (𝑏𝐼 ↦ (𝑎𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎))))))
125118, 124eqtr4d 2658 1 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → 𝑋 = (𝑌 Σg (𝑋𝑓 · 𝑈)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1036   = wceq 1480  wcel 1987  wne 2790  wral 2907  Vcvv 3186  cdif 3553  wss 3556  {csn 4150   class class class wbr 4615  cmpt 4675   × cxp 5074  Fun wfun 5843  wf 5845  cfv 5849  (class class class)co 6607  𝑓 cof 6851   supp csupp 7243  Fincfn 7902   finSupp cfsupp 8222  Basecbs 15784  .rcmulr 15866  Scalarcsca 15868   ·𝑠 cvsca 15869  0gc0g 16024   Σg cgsu 16025  Mndcmnd 17218  1rcur 18425  Ringcrg 18471  LModclmod 18787   freeLMod cfrlm 20012   unitVec cuvc 20043
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4733  ax-sep 4743  ax-nul 4751  ax-pow 4805  ax-pr 4869  ax-un 6905  ax-inf2 8485  ax-cnex 9939  ax-resscn 9940  ax-1cn 9941  ax-icn 9942  ax-addcl 9943  ax-addrcl 9944  ax-mulcl 9945  ax-mulrcl 9946  ax-mulcom 9947  ax-addass 9948  ax-mulass 9949  ax-distr 9950  ax-i2m1 9951  ax-1ne0 9952  ax-1rid 9953  ax-rnegex 9954  ax-rrecex 9955  ax-cnre 9956  ax-pre-lttri 9957  ax-pre-lttrn 9958  ax-pre-ltadd 9959  ax-pre-mulgt0 9960
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3419  df-csb 3516  df-dif 3559  df-un 3561  df-in 3563  df-ss 3570  df-pss 3572  df-nul 3894  df-if 4061  df-pw 4134  df-sn 4151  df-pr 4153  df-tp 4155  df-op 4157  df-uni 4405  df-int 4443  df-iun 4489  df-iin 4490  df-br 4616  df-opab 4676  df-mpt 4677  df-tr 4715  df-eprel 4987  df-id 4991  df-po 4997  df-so 4998  df-fr 5035  df-se 5036  df-we 5037  df-xp 5082  df-rel 5083  df-cnv 5084  df-co 5085  df-dm 5086  df-rn 5087  df-res 5088  df-ima 5089  df-pred 5641  df-ord 5687  df-on 5688  df-lim 5689  df-suc 5690  df-iota 5812  df-fun 5851  df-fn 5852  df-f 5853  df-f1 5854  df-fo 5855  df-f1o 5856  df-fv 5857  df-isom 5858  df-riota 6568  df-ov 6610  df-oprab 6611  df-mpt2 6612  df-of 6853  df-om 7016  df-1st 7116  df-2nd 7117  df-supp 7244  df-wrecs 7355  df-recs 7416  df-rdg 7454  df-1o 7508  df-oadd 7512  df-er 7690  df-map 7807  df-ixp 7856  df-en 7903  df-dom 7904  df-sdom 7905  df-fin 7906  df-fsupp 8223  df-sup 8295  df-oi 8362  df-card 8712  df-pnf 10023  df-mnf 10024  df-xr 10025  df-ltxr 10026  df-le 10027  df-sub 10215  df-neg 10216  df-nn 10968  df-2 11026  df-3 11027  df-4 11028  df-5 11029  df-6 11030  df-7 11031  df-8 11032  df-9 11033  df-n0 11240  df-z 11325  df-dec 11441  df-uz 11635  df-fz 12272  df-fzo 12410  df-seq 12745  df-hash 13061  df-struct 15786  df-ndx 15787  df-slot 15788  df-base 15789  df-sets 15790  df-ress 15791  df-plusg 15878  df-mulr 15879  df-sca 15881  df-vsca 15882  df-ip 15883  df-tset 15884  df-ple 15885  df-ds 15888  df-hom 15890  df-cco 15891  df-0g 16026  df-gsum 16027  df-prds 16032  df-pws 16034  df-mre 16170  df-mrc 16171  df-acs 16173  df-mgm 17166  df-sgrp 17208  df-mnd 17219  df-mhm 17259  df-submnd 17260  df-grp 17349  df-minusg 17350  df-sbg 17351  df-mulg 17465  df-subg 17515  df-cntz 17674  df-cmn 18119  df-abl 18120  df-mgp 18414  df-ur 18426  df-ring 18473  df-subrg 18702  df-lmod 18789  df-lss 18855  df-sra 19094  df-rgmod 19095  df-dsmm 19998  df-frlm 20013  df-uvc 20044
This theorem is referenced by:  frlmsslsp  20057
  Copyright terms: Public domain W3C validator