MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uvcval Structured version   Visualization version   GIF version

Theorem uvcval 20923
Description: Value of a single unit vector in a free module. (Contributed by Stefan O'Rear, 3-Feb-2015.)
Hypotheses
Ref Expression
uvcfval.u 𝑈 = (𝑅 unitVec 𝐼)
uvcfval.o 1 = (1r𝑅)
uvcfval.z 0 = (0g𝑅)
Assertion
Ref Expression
uvcval ((𝑅𝑉𝐼𝑊𝐽𝐼) → (𝑈𝐽) = (𝑘𝐼 ↦ if(𝑘 = 𝐽, 1 , 0 )))
Distinct variable groups:   1 ,𝑘   𝑅,𝑘   𝑘,𝐼   0 ,𝑘   𝑘,𝐽
Allowed substitution hints:   𝑈(𝑘)   𝑉(𝑘)   𝑊(𝑘)

Proof of Theorem uvcval
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 uvcfval.u . . . . 5 𝑈 = (𝑅 unitVec 𝐼)
2 uvcfval.o . . . . 5 1 = (1r𝑅)
3 uvcfval.z . . . . 5 0 = (0g𝑅)
41, 2, 3uvcfval 20922 . . . 4 ((𝑅𝑉𝐼𝑊) → 𝑈 = (𝑗𝐼 ↦ (𝑘𝐼 ↦ if(𝑘 = 𝑗, 1 , 0 ))))
54fveq1d 6666 . . 3 ((𝑅𝑉𝐼𝑊) → (𝑈𝐽) = ((𝑗𝐼 ↦ (𝑘𝐼 ↦ if(𝑘 = 𝑗, 1 , 0 )))‘𝐽))
653adant3 1128 . 2 ((𝑅𝑉𝐼𝑊𝐽𝐼) → (𝑈𝐽) = ((𝑗𝐼 ↦ (𝑘𝐼 ↦ if(𝑘 = 𝑗, 1 , 0 )))‘𝐽))
7 eqid 2821 . . 3 (𝑗𝐼 ↦ (𝑘𝐼 ↦ if(𝑘 = 𝑗, 1 , 0 ))) = (𝑗𝐼 ↦ (𝑘𝐼 ↦ if(𝑘 = 𝑗, 1 , 0 )))
8 eqeq2 2833 . . . . 5 (𝑗 = 𝐽 → (𝑘 = 𝑗𝑘 = 𝐽))
98ifbid 4488 . . . 4 (𝑗 = 𝐽 → if(𝑘 = 𝑗, 1 , 0 ) = if(𝑘 = 𝐽, 1 , 0 ))
109mpteq2dv 5154 . . 3 (𝑗 = 𝐽 → (𝑘𝐼 ↦ if(𝑘 = 𝑗, 1 , 0 )) = (𝑘𝐼 ↦ if(𝑘 = 𝐽, 1 , 0 )))
11 simp3 1134 . . 3 ((𝑅𝑉𝐼𝑊𝐽𝐼) → 𝐽𝐼)
12 mptexg 6978 . . . 4 (𝐼𝑊 → (𝑘𝐼 ↦ if(𝑘 = 𝐽, 1 , 0 )) ∈ V)
13123ad2ant2 1130 . . 3 ((𝑅𝑉𝐼𝑊𝐽𝐼) → (𝑘𝐼 ↦ if(𝑘 = 𝐽, 1 , 0 )) ∈ V)
147, 10, 11, 13fvmptd3 6785 . 2 ((𝑅𝑉𝐼𝑊𝐽𝐼) → ((𝑗𝐼 ↦ (𝑘𝐼 ↦ if(𝑘 = 𝑗, 1 , 0 )))‘𝐽) = (𝑘𝐼 ↦ if(𝑘 = 𝐽, 1 , 0 )))
156, 14eqtrd 2856 1 ((𝑅𝑉𝐼𝑊𝐽𝐼) → (𝑈𝐽) = (𝑘𝐼 ↦ if(𝑘 = 𝐽, 1 , 0 )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1533  wcel 2110  Vcvv 3494  ifcif 4466  cmpt 5138  cfv 6349  (class class class)co 7150  0gc0g 16707  1rcur 19245   unitVec cuvc 20920
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pr 5321
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-ov 7153  df-oprab 7154  df-mpo 7155  df-uvc 20921
This theorem is referenced by:  uvcvval  20924
  Copyright terms: Public domain W3C validator