MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uvcvv0 Structured version   Visualization version   GIF version

Theorem uvcvv0 20928
Description: The unit vector is zero at its designated coordinate. (Contributed by Stefan O'Rear, 3-Feb-2015.)
Hypotheses
Ref Expression
uvcvv.u 𝑈 = (𝑅 unitVec 𝐼)
uvcvv.r (𝜑𝑅𝑉)
uvcvv.i (𝜑𝐼𝑊)
uvcvv.j (𝜑𝐽𝐼)
uvcvv0.k (𝜑𝐾𝐼)
uvcvv0.jk (𝜑𝐽𝐾)
uvcvv0.z 0 = (0g𝑅)
Assertion
Ref Expression
uvcvv0 (𝜑 → ((𝑈𝐽)‘𝐾) = 0 )

Proof of Theorem uvcvv0
StepHypRef Expression
1 uvcvv.r . . 3 (𝜑𝑅𝑉)
2 uvcvv.i . . 3 (𝜑𝐼𝑊)
3 uvcvv.j . . 3 (𝜑𝐽𝐼)
4 uvcvv0.k . . 3 (𝜑𝐾𝐼)
5 uvcvv.u . . . 4 𝑈 = (𝑅 unitVec 𝐼)
6 eqid 2821 . . . 4 (1r𝑅) = (1r𝑅)
7 uvcvv0.z . . . 4 0 = (0g𝑅)
85, 6, 7uvcvval 20924 . . 3 (((𝑅𝑉𝐼𝑊𝐽𝐼) ∧ 𝐾𝐼) → ((𝑈𝐽)‘𝐾) = if(𝐾 = 𝐽, (1r𝑅), 0 ))
91, 2, 3, 4, 8syl31anc 1369 . 2 (𝜑 → ((𝑈𝐽)‘𝐾) = if(𝐾 = 𝐽, (1r𝑅), 0 ))
10 uvcvv0.jk . . . 4 (𝜑𝐽𝐾)
11 nesym 3072 . . . 4 (𝐽𝐾 ↔ ¬ 𝐾 = 𝐽)
1210, 11sylib 220 . . 3 (𝜑 → ¬ 𝐾 = 𝐽)
1312iffalsed 4477 . 2 (𝜑 → if(𝐾 = 𝐽, (1r𝑅), 0 ) = 0 )
149, 13eqtrd 2856 1 (𝜑 → ((𝑈𝐽)‘𝐾) = 0 )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1533  wcel 2110  wne 3016  ifcif 4466  cfv 6349  (class class class)co 7150  0gc0g 16707  1rcur 19245   unitVec cuvc 20920
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pr 5321
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-ov 7153  df-oprab 7154  df-mpo 7155  df-uvc 20921
This theorem is referenced by:  uvcf1  20930  uvcresum  20931  frlmssuvc1  20932  frlmsslsp  20934  frlmup2  20937
  Copyright terms: Public domain W3C validator