![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uvcvv0 | Structured version Visualization version GIF version |
Description: The unit vector is zero at its designated coordinate. (Contributed by Stefan O'Rear, 3-Feb-2015.) |
Ref | Expression |
---|---|
uvcvv.u | ⊢ 𝑈 = (𝑅 unitVec 𝐼) |
uvcvv.r | ⊢ (𝜑 → 𝑅 ∈ 𝑉) |
uvcvv.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
uvcvv.j | ⊢ (𝜑 → 𝐽 ∈ 𝐼) |
uvcvv0.k | ⊢ (𝜑 → 𝐾 ∈ 𝐼) |
uvcvv0.jk | ⊢ (𝜑 → 𝐽 ≠ 𝐾) |
uvcvv0.z | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
uvcvv0 | ⊢ (𝜑 → ((𝑈‘𝐽)‘𝐾) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uvcvv.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ 𝑉) | |
2 | uvcvv.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
3 | uvcvv.j | . . 3 ⊢ (𝜑 → 𝐽 ∈ 𝐼) | |
4 | uvcvv0.k | . . 3 ⊢ (𝜑 → 𝐾 ∈ 𝐼) | |
5 | uvcvv.u | . . . 4 ⊢ 𝑈 = (𝑅 unitVec 𝐼) | |
6 | eqid 2752 | . . . 4 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
7 | uvcvv0.z | . . . 4 ⊢ 0 = (0g‘𝑅) | |
8 | 5, 6, 7 | uvcvval 20319 | . . 3 ⊢ (((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ∧ 𝐽 ∈ 𝐼) ∧ 𝐾 ∈ 𝐼) → ((𝑈‘𝐽)‘𝐾) = if(𝐾 = 𝐽, (1r‘𝑅), 0 )) |
9 | 1, 2, 3, 4, 8 | syl31anc 1476 | . 2 ⊢ (𝜑 → ((𝑈‘𝐽)‘𝐾) = if(𝐾 = 𝐽, (1r‘𝑅), 0 )) |
10 | uvcvv0.jk | . . . 4 ⊢ (𝜑 → 𝐽 ≠ 𝐾) | |
11 | nesym 2980 | . . . 4 ⊢ (𝐽 ≠ 𝐾 ↔ ¬ 𝐾 = 𝐽) | |
12 | 10, 11 | sylib 208 | . . 3 ⊢ (𝜑 → ¬ 𝐾 = 𝐽) |
13 | 12 | iffalsed 4233 | . 2 ⊢ (𝜑 → if(𝐾 = 𝐽, (1r‘𝑅), 0 ) = 0 ) |
14 | 9, 13 | eqtrd 2786 | 1 ⊢ (𝜑 → ((𝑈‘𝐽)‘𝐾) = 0 ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1624 ∈ wcel 2131 ≠ wne 2924 ifcif 4222 ‘cfv 6041 (class class class)co 6805 0gc0g 16294 1rcur 18693 unitVec cuvc 20315 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1863 ax-4 1878 ax-5 1980 ax-6 2046 ax-7 2082 ax-9 2140 ax-10 2160 ax-11 2175 ax-12 2188 ax-13 2383 ax-ext 2732 ax-rep 4915 ax-sep 4925 ax-nul 4933 ax-pr 5047 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1627 df-ex 1846 df-nf 1851 df-sb 2039 df-eu 2603 df-mo 2604 df-clab 2739 df-cleq 2745 df-clel 2748 df-nfc 2883 df-ne 2925 df-ral 3047 df-rex 3048 df-reu 3049 df-rab 3051 df-v 3334 df-sbc 3569 df-csb 3667 df-dif 3710 df-un 3712 df-in 3714 df-ss 3721 df-nul 4051 df-if 4223 df-sn 4314 df-pr 4316 df-op 4320 df-uni 4581 df-iun 4666 df-br 4797 df-opab 4857 df-mpt 4874 df-id 5166 df-xp 5264 df-rel 5265 df-cnv 5266 df-co 5267 df-dm 5268 df-rn 5269 df-res 5270 df-ima 5271 df-iota 6004 df-fun 6043 df-fn 6044 df-f 6045 df-f1 6046 df-fo 6047 df-f1o 6048 df-fv 6049 df-ov 6808 df-oprab 6809 df-mpt2 6810 df-uvc 20316 |
This theorem is referenced by: uvcf1 20325 uvcresum 20326 frlmssuvc1 20327 frlmsslsp 20329 frlmup2 20332 |
Copyright terms: Public domain | W3C validator |