Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  uvtxanbgr Structured version   Visualization version   GIF version

Theorem uvtxanbgr 26179
 Description: A universal vertex has all other vertices as neighbors. (Contributed by Alexander van der Vekens, 14-Oct-2017.) (Revised by AV, 30-Oct-2020.)
Hypothesis
Ref Expression
uvtxael.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
uvtxanbgr (𝑁 ∈ (UnivVtx‘𝐺) → (𝑉 ∖ {𝑁}) ⊆ (𝐺 NeighbVtx 𝑁))

Proof of Theorem uvtxanbgr
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 uvtxael.v . . 3 𝑉 = (Vtx‘𝐺)
21vtxnbuvtx 26178 . 2 (𝑁 ∈ (UnivVtx‘𝐺) → ∀𝑛 ∈ (𝑉 ∖ {𝑁})𝑛 ∈ (𝐺 NeighbVtx 𝑁))
3 dfss3 3573 . 2 ((𝑉 ∖ {𝑁}) ⊆ (𝐺 NeighbVtx 𝑁) ↔ ∀𝑛 ∈ (𝑉 ∖ {𝑁})𝑛 ∈ (𝐺 NeighbVtx 𝑁))
42, 3sylibr 224 1 (𝑁 ∈ (UnivVtx‘𝐺) → (𝑉 ∖ {𝑁}) ⊆ (𝐺 NeighbVtx 𝑁))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1480   ∈ wcel 1987  ∀wral 2907   ∖ cdif 3552   ⊆ wss 3555  {csn 4148  ‘cfv 5847  (class class class)co 6604  Vtxcvtx 25774   NeighbVtx cnbgr 26111  UnivVtxcuvtxa 26112 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-iota 5810  df-fun 5849  df-fv 5855  df-ov 6607  df-uvtxa 26117 This theorem is referenced by:  uvtxnbgr  26188
 Copyright terms: Public domain W3C validator