Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  uvtxnbgrvtx Structured version   Visualization version   GIF version

Theorem uvtxnbgrvtx 26487
 Description: A universal vertex is neighbor of all other vertices. (Contributed by Alexander van der Vekens, 14-Oct-2017.) (Revised by AV, 30-Oct-2020.)
Hypothesis
Ref Expression
uvtxel.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
uvtxnbgrvtx (𝑁 ∈ (UnivVtx‘𝐺) → ∀𝑣 ∈ (𝑉 ∖ {𝑁})𝑁 ∈ (𝐺 NeighbVtx 𝑣))
Distinct variable groups:   𝑣,𝐺   𝑣,𝑁   𝑣,𝑉

Proof of Theorem uvtxnbgrvtx
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 uvtxel.v . . . 4 𝑉 = (Vtx‘𝐺)
21vtxnbuvtx 26485 . . 3 (𝑁 ∈ (UnivVtx‘𝐺) → ∀𝑛 ∈ (𝑉 ∖ {𝑁})𝑛 ∈ (𝐺 NeighbVtx 𝑁))
3 eleq1w 2814 . . . . . . 7 (𝑛 = 𝑣 → (𝑛 ∈ (𝐺 NeighbVtx 𝑁) ↔ 𝑣 ∈ (𝐺 NeighbVtx 𝑁)))
43rspcva 3439 . . . . . 6 ((𝑣 ∈ (𝑉 ∖ {𝑁}) ∧ ∀𝑛 ∈ (𝑉 ∖ {𝑁})𝑛 ∈ (𝐺 NeighbVtx 𝑁)) → 𝑣 ∈ (𝐺 NeighbVtx 𝑁))
5 nbgrsym 26454 . . . . . . 7 (𝑣 ∈ (𝐺 NeighbVtx 𝑁) ↔ 𝑁 ∈ (𝐺 NeighbVtx 𝑣))
65a1i 11 . . . . . 6 (𝑁 ∈ (UnivVtx‘𝐺) → (𝑣 ∈ (𝐺 NeighbVtx 𝑁) ↔ 𝑁 ∈ (𝐺 NeighbVtx 𝑣)))
74, 6syl5ibcom 235 . . . . 5 ((𝑣 ∈ (𝑉 ∖ {𝑁}) ∧ ∀𝑛 ∈ (𝑉 ∖ {𝑁})𝑛 ∈ (𝐺 NeighbVtx 𝑁)) → (𝑁 ∈ (UnivVtx‘𝐺) → 𝑁 ∈ (𝐺 NeighbVtx 𝑣)))
87expcom 450 . . . 4 (∀𝑛 ∈ (𝑉 ∖ {𝑁})𝑛 ∈ (𝐺 NeighbVtx 𝑁) → (𝑣 ∈ (𝑉 ∖ {𝑁}) → (𝑁 ∈ (UnivVtx‘𝐺) → 𝑁 ∈ (𝐺 NeighbVtx 𝑣))))
98com23 86 . . 3 (∀𝑛 ∈ (𝑉 ∖ {𝑁})𝑛 ∈ (𝐺 NeighbVtx 𝑁) → (𝑁 ∈ (UnivVtx‘𝐺) → (𝑣 ∈ (𝑉 ∖ {𝑁}) → 𝑁 ∈ (𝐺 NeighbVtx 𝑣))))
102, 9mpcom 38 . 2 (𝑁 ∈ (UnivVtx‘𝐺) → (𝑣 ∈ (𝑉 ∖ {𝑁}) → 𝑁 ∈ (𝐺 NeighbVtx 𝑣)))
1110ralrimiv 3095 1 (𝑁 ∈ (UnivVtx‘𝐺) → ∀𝑣 ∈ (𝑉 ∖ {𝑁})𝑁 ∈ (𝐺 NeighbVtx 𝑣))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   = wceq 1624   ∈ wcel 2131  ∀wral 3042   ∖ cdif 3704  {csn 4313  ‘cfv 6041  (class class class)co 6805  Vtxcvtx 26065   NeighbVtx cnbgr 26415  UnivVtxcuvtx 26477 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-8 2133  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732  ax-sep 4925  ax-nul 4933  ax-pow 4984  ax-pr 5047  ax-un 7106 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1627  df-fal 1630  df-ex 1846  df-nf 1851  df-sb 2039  df-eu 2603  df-mo 2604  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-ne 2925  df-ral 3047  df-rex 3048  df-rab 3051  df-v 3334  df-sbc 3569  df-csb 3667  df-dif 3710  df-un 3712  df-in 3714  df-ss 3721  df-nul 4051  df-if 4223  df-sn 4314  df-pr 4316  df-op 4320  df-uni 4581  df-iun 4666  df-br 4797  df-opab 4857  df-mpt 4874  df-id 5166  df-xp 5264  df-rel 5265  df-cnv 5266  df-co 5267  df-dm 5268  df-rn 5269  df-res 5270  df-ima 5271  df-iota 6004  df-fun 6043  df-fv 6049  df-ov 6808  df-oprab 6809  df-mpt2 6810  df-1st 7325  df-2nd 7326  df-nbgr 26416  df-uvtx 26478 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator