Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  uvtxusgrel Structured version   Visualization version   GIF version

Theorem uvtxusgrel 26354
 Description: A universal vertex, i.e. an element of the set of all universal vertices, of a simple graph. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 31-Oct-2020.)
Hypotheses
Ref Expression
uvtxnbgr.v 𝑉 = (Vtx‘𝐺)
uvtxusgr.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
uvtxusgrel (𝐺 ∈ USGraph → (𝑁 ∈ (UnivVtx‘𝐺) ↔ (𝑁𝑉 ∧ ∀𝑘 ∈ (𝑉 ∖ {𝑁}){𝑘, 𝑁} ∈ 𝐸)))
Distinct variable groups:   𝑘,𝐺   𝑘,𝑉   𝑘,𝑁
Allowed substitution hint:   𝐸(𝑘)

Proof of Theorem uvtxusgrel
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 uvtxnbgr.v . . . 4 𝑉 = (Vtx‘𝐺)
2 uvtxusgr.e . . . 4 𝐸 = (Edg‘𝐺)
31, 2uvtxusgr 26353 . . 3 (𝐺 ∈ USGraph → (UnivVtx‘𝐺) = {𝑣𝑉 ∣ ∀𝑘 ∈ (𝑉 ∖ {𝑣}){𝑘, 𝑣} ∈ 𝐸})
43eleq2d 2716 . 2 (𝐺 ∈ USGraph → (𝑁 ∈ (UnivVtx‘𝐺) ↔ 𝑁 ∈ {𝑣𝑉 ∣ ∀𝑘 ∈ (𝑉 ∖ {𝑣}){𝑘, 𝑣} ∈ 𝐸}))
5 sneq 4220 . . . . 5 (𝑣 = 𝑁 → {𝑣} = {𝑁})
65difeq2d 3761 . . . 4 (𝑣 = 𝑁 → (𝑉 ∖ {𝑣}) = (𝑉 ∖ {𝑁}))
7 preq2 4301 . . . . 5 (𝑣 = 𝑁 → {𝑘, 𝑣} = {𝑘, 𝑁})
87eleq1d 2715 . . . 4 (𝑣 = 𝑁 → ({𝑘, 𝑣} ∈ 𝐸 ↔ {𝑘, 𝑁} ∈ 𝐸))
96, 8raleqbidv 3182 . . 3 (𝑣 = 𝑁 → (∀𝑘 ∈ (𝑉 ∖ {𝑣}){𝑘, 𝑣} ∈ 𝐸 ↔ ∀𝑘 ∈ (𝑉 ∖ {𝑁}){𝑘, 𝑁} ∈ 𝐸))
109elrab 3396 . 2 (𝑁 ∈ {𝑣𝑉 ∣ ∀𝑘 ∈ (𝑉 ∖ {𝑣}){𝑘, 𝑣} ∈ 𝐸} ↔ (𝑁𝑉 ∧ ∀𝑘 ∈ (𝑉 ∖ {𝑁}){𝑘, 𝑁} ∈ 𝐸))
114, 10syl6bb 276 1 (𝐺 ∈ USGraph → (𝑁 ∈ (UnivVtx‘𝐺) ↔ (𝑁𝑉 ∧ ∀𝑘 ∈ (𝑉 ∖ {𝑁}){𝑘, 𝑁} ∈ 𝐸)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   = wceq 1523   ∈ wcel 2030  ∀wral 2941  {crab 2945   ∖ cdif 3604  {csn 4210  {cpr 4212  ‘cfv 5926  Vtxcvtx 25919  Edgcedg 25984  USGraphcusgr 26089  UnivVtxcuvtx 26331 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-card 8803  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-n0 11331  df-xnn0 11402  df-z 11416  df-uz 11726  df-fz 12365  df-hash 13158  df-edg 25985  df-upgr 26022  df-umgr 26023  df-usgr 26091  df-nbgr 26270  df-uvtx 26332 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator