MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uzind4 Structured version   Visualization version   GIF version

Theorem uzind4 11575
Description: Induction on the upper set of integers that starts at an integer 𝑀. The first four hypotheses give us the substitution instances we need, and the last two are the basis and the induction step. (Contributed by NM, 7-Sep-2005.)
Hypotheses
Ref Expression
uzind4.1 (𝑗 = 𝑀 → (𝜑𝜓))
uzind4.2 (𝑗 = 𝑘 → (𝜑𝜒))
uzind4.3 (𝑗 = (𝑘 + 1) → (𝜑𝜃))
uzind4.4 (𝑗 = 𝑁 → (𝜑𝜏))
uzind4.5 (𝑀 ∈ ℤ → 𝜓)
uzind4.6 (𝑘 ∈ (ℤ𝑀) → (𝜒𝜃))
Assertion
Ref Expression
uzind4 (𝑁 ∈ (ℤ𝑀) → 𝜏)
Distinct variable groups:   𝑗,𝑁   𝜓,𝑗   𝜒,𝑗   𝜃,𝑗   𝜏,𝑗   𝜑,𝑘   𝑗,𝑘,𝑀
Allowed substitution hints:   𝜑(𝑗)   𝜓(𝑘)   𝜒(𝑘)   𝜃(𝑘)   𝜏(𝑘)   𝑁(𝑘)

Proof of Theorem uzind4
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 eluzel2 11521 . 2 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
2 eluzelz 11526 . . 3 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
3 eluzle 11529 . . 3 (𝑁 ∈ (ℤ𝑀) → 𝑀𝑁)
4 breq2 4578 . . . 4 (𝑚 = 𝑁 → (𝑀𝑚𝑀𝑁))
54elrab 3327 . . 3 (𝑁 ∈ {𝑚 ∈ ℤ ∣ 𝑀𝑚} ↔ (𝑁 ∈ ℤ ∧ 𝑀𝑁))
62, 3, 5sylanbrc 694 . 2 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ {𝑚 ∈ ℤ ∣ 𝑀𝑚})
7 uzind4.1 . . 3 (𝑗 = 𝑀 → (𝜑𝜓))
8 uzind4.2 . . 3 (𝑗 = 𝑘 → (𝜑𝜒))
9 uzind4.3 . . 3 (𝑗 = (𝑘 + 1) → (𝜑𝜃))
10 uzind4.4 . . 3 (𝑗 = 𝑁 → (𝜑𝜏))
11 uzind4.5 . . 3 (𝑀 ∈ ℤ → 𝜓)
12 breq2 4578 . . . . . 6 (𝑚 = 𝑘 → (𝑀𝑚𝑀𝑘))
1312elrab 3327 . . . . 5 (𝑘 ∈ {𝑚 ∈ ℤ ∣ 𝑀𝑚} ↔ (𝑘 ∈ ℤ ∧ 𝑀𝑘))
14 eluz2 11522 . . . . . . 7 (𝑘 ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀𝑘))
1514biimpri 216 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀𝑘) → 𝑘 ∈ (ℤ𝑀))
16153expb 1257 . . . . 5 ((𝑀 ∈ ℤ ∧ (𝑘 ∈ ℤ ∧ 𝑀𝑘)) → 𝑘 ∈ (ℤ𝑀))
1713, 16sylan2b 490 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑘 ∈ {𝑚 ∈ ℤ ∣ 𝑀𝑚}) → 𝑘 ∈ (ℤ𝑀))
18 uzind4.6 . . . 4 (𝑘 ∈ (ℤ𝑀) → (𝜒𝜃))
1917, 18syl 17 . . 3 ((𝑀 ∈ ℤ ∧ 𝑘 ∈ {𝑚 ∈ ℤ ∣ 𝑀𝑚}) → (𝜒𝜃))
207, 8, 9, 10, 11, 19uzind3 11300 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ {𝑚 ∈ ℤ ∣ 𝑀𝑚}) → 𝜏)
211, 6, 20syl2anc 690 1 (𝑁 ∈ (ℤ𝑀) → 𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wa 382  w3a 1030   = wceq 1474  wcel 1976  {crab 2896   class class class wbr 4574  cfv 5787  (class class class)co 6524  1c1 9790   + caddc 9792  cle 9928  cz 11207  cuz 11516
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2229  ax-ext 2586  ax-sep 4700  ax-nul 4709  ax-pow 4761  ax-pr 4825  ax-un 6821  ax-cnex 9845  ax-resscn 9846  ax-1cn 9847  ax-icn 9848  ax-addcl 9849  ax-addrcl 9850  ax-mulcl 9851  ax-mulrcl 9852  ax-mulcom 9853  ax-addass 9854  ax-mulass 9855  ax-distr 9856  ax-i2m1 9857  ax-1ne0 9858  ax-1rid 9859  ax-rnegex 9860  ax-rrecex 9861  ax-cnre 9862  ax-pre-lttri 9863  ax-pre-lttrn 9864  ax-pre-ltadd 9865  ax-pre-mulgt0 9866
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2458  df-mo 2459  df-clab 2593  df-cleq 2599  df-clel 2602  df-nfc 2736  df-ne 2778  df-nel 2779  df-ral 2897  df-rex 2898  df-reu 2899  df-rab 2901  df-v 3171  df-sbc 3399  df-csb 3496  df-dif 3539  df-un 3541  df-in 3543  df-ss 3550  df-pss 3552  df-nul 3871  df-if 4033  df-pw 4106  df-sn 4122  df-pr 4124  df-tp 4126  df-op 4128  df-uni 4364  df-iun 4448  df-br 4575  df-opab 4635  df-mpt 4636  df-tr 4672  df-eprel 4936  df-id 4940  df-po 4946  df-so 4947  df-fr 4984  df-we 4986  df-xp 5031  df-rel 5032  df-cnv 5033  df-co 5034  df-dm 5035  df-rn 5036  df-res 5037  df-ima 5038  df-pred 5580  df-ord 5626  df-on 5627  df-lim 5628  df-suc 5629  df-iota 5751  df-fun 5789  df-fn 5790  df-f 5791  df-f1 5792  df-fo 5793  df-f1o 5794  df-fv 5795  df-riota 6486  df-ov 6527  df-oprab 6528  df-mpt2 6529  df-om 6932  df-wrecs 7268  df-recs 7329  df-rdg 7367  df-er 7603  df-en 7816  df-dom 7817  df-sdom 7818  df-pnf 9929  df-mnf 9930  df-xr 9931  df-ltxr 9932  df-le 9933  df-sub 10116  df-neg 10117  df-nn 10865  df-n0 11137  df-z 11208  df-uz 11517
This theorem is referenced by:  uzind4ALT  11576  uzind4s  11577  uzind4s2  11578  uzind4i  11579  uzwo  11580  seqcl2  12633  seqfveq2  12637  seqshft2  12641  monoord  12645  seqsplit  12648  seqf1o  12656  seqid2  12661  seqhomo  12662  leexp2r  12732  cvgrat  14397  clim2prod  14402  ntrivcvgfvn0  14413  fprodabs  14486  fprodefsum  14607  ruclem9  14749  dvdsfac  14829  smuval2  14985  smupvallem  14986  seq1st  15065  prmreclem4  15404  vdwlem13  15478  2expltfac  15580  telgsumfzs  18152  1stcelcls  21013  caubl  22828  caublcls  22829  volsuplem  23044  cpnord  23418  aaliou3lem2  23816  bcmono  24716  sseqp1  29587  iprodefisumlem  30682  sdclem2  32508  seqpo  32513  mettrifi  32523  incssnn0  36092  dvgrat  37333  climsuselem1  38475  smonoord  39746
  Copyright terms: Public domain W3C validator