MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uzrdgxfr Structured version   Visualization version   GIF version

Theorem uzrdgxfr 12583
Description: Transfer the value of the recursive sequence builder from one base to another. (Contributed by Mario Carneiro, 1-Apr-2014.)
Hypotheses
Ref Expression
uzrdgxfr.1 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐴) ↾ ω)
uzrdgxfr.2 𝐻 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐵) ↾ ω)
uzrdgxfr.3 𝐴 ∈ ℤ
uzrdgxfr.4 𝐵 ∈ ℤ
Assertion
Ref Expression
uzrdgxfr (𝑁 ∈ ω → (𝐺𝑁) = ((𝐻𝑁) + (𝐴𝐵)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝐺(𝑥)   𝐻(𝑥)   𝑁(𝑥)

Proof of Theorem uzrdgxfr
Dummy variables 𝑘 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6088 . . 3 (𝑦 = ∅ → (𝐺𝑦) = (𝐺‘∅))
2 fveq2 6088 . . . 4 (𝑦 = ∅ → (𝐻𝑦) = (𝐻‘∅))
32oveq1d 6542 . . 3 (𝑦 = ∅ → ((𝐻𝑦) + (𝐴𝐵)) = ((𝐻‘∅) + (𝐴𝐵)))
41, 3eqeq12d 2624 . 2 (𝑦 = ∅ → ((𝐺𝑦) = ((𝐻𝑦) + (𝐴𝐵)) ↔ (𝐺‘∅) = ((𝐻‘∅) + (𝐴𝐵))))
5 fveq2 6088 . . 3 (𝑦 = 𝑘 → (𝐺𝑦) = (𝐺𝑘))
6 fveq2 6088 . . . 4 (𝑦 = 𝑘 → (𝐻𝑦) = (𝐻𝑘))
76oveq1d 6542 . . 3 (𝑦 = 𝑘 → ((𝐻𝑦) + (𝐴𝐵)) = ((𝐻𝑘) + (𝐴𝐵)))
85, 7eqeq12d 2624 . 2 (𝑦 = 𝑘 → ((𝐺𝑦) = ((𝐻𝑦) + (𝐴𝐵)) ↔ (𝐺𝑘) = ((𝐻𝑘) + (𝐴𝐵))))
9 fveq2 6088 . . 3 (𝑦 = suc 𝑘 → (𝐺𝑦) = (𝐺‘suc 𝑘))
10 fveq2 6088 . . . 4 (𝑦 = suc 𝑘 → (𝐻𝑦) = (𝐻‘suc 𝑘))
1110oveq1d 6542 . . 3 (𝑦 = suc 𝑘 → ((𝐻𝑦) + (𝐴𝐵)) = ((𝐻‘suc 𝑘) + (𝐴𝐵)))
129, 11eqeq12d 2624 . 2 (𝑦 = suc 𝑘 → ((𝐺𝑦) = ((𝐻𝑦) + (𝐴𝐵)) ↔ (𝐺‘suc 𝑘) = ((𝐻‘suc 𝑘) + (𝐴𝐵))))
13 fveq2 6088 . . 3 (𝑦 = 𝑁 → (𝐺𝑦) = (𝐺𝑁))
14 fveq2 6088 . . . 4 (𝑦 = 𝑁 → (𝐻𝑦) = (𝐻𝑁))
1514oveq1d 6542 . . 3 (𝑦 = 𝑁 → ((𝐻𝑦) + (𝐴𝐵)) = ((𝐻𝑁) + (𝐴𝐵)))
1613, 15eqeq12d 2624 . 2 (𝑦 = 𝑁 → ((𝐺𝑦) = ((𝐻𝑦) + (𝐴𝐵)) ↔ (𝐺𝑁) = ((𝐻𝑁) + (𝐴𝐵))))
17 uzrdgxfr.4 . . . . 5 𝐵 ∈ ℤ
18 zcn 11215 . . . . 5 (𝐵 ∈ ℤ → 𝐵 ∈ ℂ)
1917, 18ax-mp 5 . . . 4 𝐵 ∈ ℂ
20 uzrdgxfr.3 . . . . 5 𝐴 ∈ ℤ
21 zcn 11215 . . . . 5 (𝐴 ∈ ℤ → 𝐴 ∈ ℂ)
2220, 21ax-mp 5 . . . 4 𝐴 ∈ ℂ
2319, 22pncan3i 10209 . . 3 (𝐵 + (𝐴𝐵)) = 𝐴
24 uzrdgxfr.2 . . . . 5 𝐻 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐵) ↾ ω)
2517, 24om2uz0i 12563 . . . 4 (𝐻‘∅) = 𝐵
2625oveq1i 6537 . . 3 ((𝐻‘∅) + (𝐴𝐵)) = (𝐵 + (𝐴𝐵))
27 uzrdgxfr.1 . . . 4 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐴) ↾ ω)
2820, 27om2uz0i 12563 . . 3 (𝐺‘∅) = 𝐴
2923, 26, 283eqtr4ri 2642 . 2 (𝐺‘∅) = ((𝐻‘∅) + (𝐴𝐵))
30 oveq1 6534 . . 3 ((𝐺𝑘) = ((𝐻𝑘) + (𝐴𝐵)) → ((𝐺𝑘) + 1) = (((𝐻𝑘) + (𝐴𝐵)) + 1))
3120, 27om2uzsuci 12564 . . . 4 (𝑘 ∈ ω → (𝐺‘suc 𝑘) = ((𝐺𝑘) + 1))
3217, 24om2uzsuci 12564 . . . . . 6 (𝑘 ∈ ω → (𝐻‘suc 𝑘) = ((𝐻𝑘) + 1))
3332oveq1d 6542 . . . . 5 (𝑘 ∈ ω → ((𝐻‘suc 𝑘) + (𝐴𝐵)) = (((𝐻𝑘) + 1) + (𝐴𝐵)))
3417, 24om2uzuzi 12565 . . . . . . . 8 (𝑘 ∈ ω → (𝐻𝑘) ∈ (ℤ𝐵))
35 eluzelz 11529 . . . . . . . 8 ((𝐻𝑘) ∈ (ℤ𝐵) → (𝐻𝑘) ∈ ℤ)
3634, 35syl 17 . . . . . . 7 (𝑘 ∈ ω → (𝐻𝑘) ∈ ℤ)
3736zcnd 11315 . . . . . 6 (𝑘 ∈ ω → (𝐻𝑘) ∈ ℂ)
38 ax-1cn 9850 . . . . . . 7 1 ∈ ℂ
3922, 19subcli 10208 . . . . . . 7 (𝐴𝐵) ∈ ℂ
40 add32 10105 . . . . . . 7 (((𝐻𝑘) ∈ ℂ ∧ 1 ∈ ℂ ∧ (𝐴𝐵) ∈ ℂ) → (((𝐻𝑘) + 1) + (𝐴𝐵)) = (((𝐻𝑘) + (𝐴𝐵)) + 1))
4138, 39, 40mp3an23 1407 . . . . . 6 ((𝐻𝑘) ∈ ℂ → (((𝐻𝑘) + 1) + (𝐴𝐵)) = (((𝐻𝑘) + (𝐴𝐵)) + 1))
4237, 41syl 17 . . . . 5 (𝑘 ∈ ω → (((𝐻𝑘) + 1) + (𝐴𝐵)) = (((𝐻𝑘) + (𝐴𝐵)) + 1))
4333, 42eqtrd 2643 . . . 4 (𝑘 ∈ ω → ((𝐻‘suc 𝑘) + (𝐴𝐵)) = (((𝐻𝑘) + (𝐴𝐵)) + 1))
4431, 43eqeq12d 2624 . . 3 (𝑘 ∈ ω → ((𝐺‘suc 𝑘) = ((𝐻‘suc 𝑘) + (𝐴𝐵)) ↔ ((𝐺𝑘) + 1) = (((𝐻𝑘) + (𝐴𝐵)) + 1)))
4530, 44syl5ibr 234 . 2 (𝑘 ∈ ω → ((𝐺𝑘) = ((𝐻𝑘) + (𝐴𝐵)) → (𝐺‘suc 𝑘) = ((𝐻‘suc 𝑘) + (𝐴𝐵))))
464, 8, 12, 16, 29, 45finds 6961 1 (𝑁 ∈ ω → (𝐺𝑁) = ((𝐻𝑁) + (𝐴𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1474  wcel 1976  Vcvv 3172  c0 3873  cmpt 4637  cres 5030  suc csuc 5628  cfv 5790  (class class class)co 6527  ωcom 6934  reccrdg 7369  cc 9790  1c1 9793   + caddc 9795  cmin 10117  cz 11210  cuz 11519
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2232  ax-ext 2589  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-om 6935  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-er 7606  df-en 7819  df-dom 7820  df-sdom 7821  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-nn 10868  df-n0 11140  df-z 11211  df-uz 11520
This theorem is referenced by:  fz1isolem  13054
  Copyright terms: Public domain W3C validator