MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uzrest Structured version   Visualization version   GIF version

Theorem uzrest 22499
Description: The restriction of the set of upper sets of integers to an upper set of integers is the set of upper sets of integers based at a point above the cutoff. (Contributed by Mario Carneiro, 13-Oct-2015.)
Hypothesis
Ref Expression
uzfbas.1 𝑍 = (ℤ𝑀)
Assertion
Ref Expression
uzrest (𝑀 ∈ ℤ → (ran ℤt 𝑍) = (ℤ𝑍))

Proof of Theorem uzrest
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zex 11984 . . . . . 6 ℤ ∈ V
21pwex 5273 . . . . 5 𝒫 ℤ ∈ V
3 uzf 12240 . . . . . 6 :ℤ⟶𝒫 ℤ
4 frn 6514 . . . . . 6 (ℤ:ℤ⟶𝒫 ℤ → ran ℤ ⊆ 𝒫 ℤ)
53, 4ax-mp 5 . . . . 5 ran ℤ ⊆ 𝒫 ℤ
62, 5ssexi 5218 . . . 4 ran ℤ ∈ V
7 uzfbas.1 . . . . 5 𝑍 = (ℤ𝑀)
87fvexi 6678 . . . 4 𝑍 ∈ V
9 restval 16694 . . . 4 ((ran ℤ ∈ V ∧ 𝑍 ∈ V) → (ran ℤt 𝑍) = ran (𝑥 ∈ ran ℤ ↦ (𝑥𝑍)))
106, 8, 9mp2an 690 . . 3 (ran ℤt 𝑍) = ran (𝑥 ∈ ran ℤ ↦ (𝑥𝑍))
117ineq2i 4185 . . . . . . . . 9 ((ℤ𝑦) ∩ 𝑍) = ((ℤ𝑦) ∩ (ℤ𝑀))
12 uzin 12272 . . . . . . . . . 10 ((𝑦 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((ℤ𝑦) ∩ (ℤ𝑀)) = (ℤ‘if(𝑦𝑀, 𝑀, 𝑦)))
1312ancoms 461 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((ℤ𝑦) ∩ (ℤ𝑀)) = (ℤ‘if(𝑦𝑀, 𝑀, 𝑦)))
1411, 13syl5eq 2868 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((ℤ𝑦) ∩ 𝑍) = (ℤ‘if(𝑦𝑀, 𝑀, 𝑦)))
15 ffn 6508 . . . . . . . . . 10 (ℤ:ℤ⟶𝒫 ℤ → ℤ Fn ℤ)
163, 15ax-mp 5 . . . . . . . . 9 Fn ℤ
17 uzssz 12258 . . . . . . . . . 10 (ℤ𝑀) ⊆ ℤ
187, 17eqsstri 4000 . . . . . . . . 9 𝑍 ⊆ ℤ
19 ifcl 4510 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ 𝑦 ∈ ℤ) → if(𝑦𝑀, 𝑀, 𝑦) ∈ ℤ)
20 uzid 12252 . . . . . . . . . . . 12 (if(𝑦𝑀, 𝑀, 𝑦) ∈ ℤ → if(𝑦𝑀, 𝑀, 𝑦) ∈ (ℤ‘if(𝑦𝑀, 𝑀, 𝑦)))
2119, 20syl 17 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ 𝑦 ∈ ℤ) → if(𝑦𝑀, 𝑀, 𝑦) ∈ (ℤ‘if(𝑦𝑀, 𝑀, 𝑦)))
2221, 14eleqtrrd 2916 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑦 ∈ ℤ) → if(𝑦𝑀, 𝑀, 𝑦) ∈ ((ℤ𝑦) ∩ 𝑍))
2322elin2d 4175 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑦 ∈ ℤ) → if(𝑦𝑀, 𝑀, 𝑦) ∈ 𝑍)
24 fnfvima 6989 . . . . . . . . 9 ((ℤ Fn ℤ ∧ 𝑍 ⊆ ℤ ∧ if(𝑦𝑀, 𝑀, 𝑦) ∈ 𝑍) → (ℤ‘if(𝑦𝑀, 𝑀, 𝑦)) ∈ (ℤ𝑍))
2516, 18, 23, 24mp3an12i 1461 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (ℤ‘if(𝑦𝑀, 𝑀, 𝑦)) ∈ (ℤ𝑍))
2614, 25eqeltrd 2913 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((ℤ𝑦) ∩ 𝑍) ∈ (ℤ𝑍))
2726ralrimiva 3182 . . . . . 6 (𝑀 ∈ ℤ → ∀𝑦 ∈ ℤ ((ℤ𝑦) ∩ 𝑍) ∈ (ℤ𝑍))
28 ineq1 4180 . . . . . . . . 9 (𝑥 = (ℤ𝑦) → (𝑥𝑍) = ((ℤ𝑦) ∩ 𝑍))
2928eleq1d 2897 . . . . . . . 8 (𝑥 = (ℤ𝑦) → ((𝑥𝑍) ∈ (ℤ𝑍) ↔ ((ℤ𝑦) ∩ 𝑍) ∈ (ℤ𝑍)))
3029ralrn 6848 . . . . . . 7 (ℤ Fn ℤ → (∀𝑥 ∈ ran ℤ(𝑥𝑍) ∈ (ℤ𝑍) ↔ ∀𝑦 ∈ ℤ ((ℤ𝑦) ∩ 𝑍) ∈ (ℤ𝑍)))
3116, 30ax-mp 5 . . . . . 6 (∀𝑥 ∈ ran ℤ(𝑥𝑍) ∈ (ℤ𝑍) ↔ ∀𝑦 ∈ ℤ ((ℤ𝑦) ∩ 𝑍) ∈ (ℤ𝑍))
3227, 31sylibr 236 . . . . 5 (𝑀 ∈ ℤ → ∀𝑥 ∈ ran ℤ(𝑥𝑍) ∈ (ℤ𝑍))
33 eqid 2821 . . . . . 6 (𝑥 ∈ ran ℤ ↦ (𝑥𝑍)) = (𝑥 ∈ ran ℤ ↦ (𝑥𝑍))
3433fmpt 6868 . . . . 5 (∀𝑥 ∈ ran ℤ(𝑥𝑍) ∈ (ℤ𝑍) ↔ (𝑥 ∈ ran ℤ ↦ (𝑥𝑍)):ran ℤ⟶(ℤ𝑍))
3532, 34sylib 220 . . . 4 (𝑀 ∈ ℤ → (𝑥 ∈ ran ℤ ↦ (𝑥𝑍)):ran ℤ⟶(ℤ𝑍))
3635frnd 6515 . . 3 (𝑀 ∈ ℤ → ran (𝑥 ∈ ran ℤ ↦ (𝑥𝑍)) ⊆ (ℤ𝑍))
3710, 36eqsstrid 4014 . 2 (𝑀 ∈ ℤ → (ran ℤt 𝑍) ⊆ (ℤ𝑍))
387uztrn2 12256 . . . . . . . . 9 ((𝑥𝑍𝑦 ∈ (ℤ𝑥)) → 𝑦𝑍)
3938ex 415 . . . . . . . 8 (𝑥𝑍 → (𝑦 ∈ (ℤ𝑥) → 𝑦𝑍))
4039ssrdv 3972 . . . . . . 7 (𝑥𝑍 → (ℤ𝑥) ⊆ 𝑍)
4140adantl 484 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑥𝑍) → (ℤ𝑥) ⊆ 𝑍)
42 df-ss 3951 . . . . . 6 ((ℤ𝑥) ⊆ 𝑍 ↔ ((ℤ𝑥) ∩ 𝑍) = (ℤ𝑥))
4341, 42sylib 220 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑥𝑍) → ((ℤ𝑥) ∩ 𝑍) = (ℤ𝑥))
4418sseli 3962 . . . . . . . 8 (𝑥𝑍𝑥 ∈ ℤ)
4544adantl 484 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑥𝑍) → 𝑥 ∈ ℤ)
46 fnfvelrn 6842 . . . . . . 7 ((ℤ Fn ℤ ∧ 𝑥 ∈ ℤ) → (ℤ𝑥) ∈ ran ℤ)
4716, 45, 46sylancr 589 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑥𝑍) → (ℤ𝑥) ∈ ran ℤ)
48 elrestr 16696 . . . . . 6 ((ran ℤ ∈ V ∧ 𝑍 ∈ V ∧ (ℤ𝑥) ∈ ran ℤ) → ((ℤ𝑥) ∩ 𝑍) ∈ (ran ℤt 𝑍))
496, 8, 47, 48mp3an12i 1461 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑥𝑍) → ((ℤ𝑥) ∩ 𝑍) ∈ (ran ℤt 𝑍))
5043, 49eqeltrrd 2914 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑥𝑍) → (ℤ𝑥) ∈ (ran ℤt 𝑍))
5150ralrimiva 3182 . . 3 (𝑀 ∈ ℤ → ∀𝑥𝑍 (ℤ𝑥) ∈ (ran ℤt 𝑍))
52 ffun 6511 . . . . 5 (ℤ:ℤ⟶𝒫 ℤ → Fun ℤ)
533, 52ax-mp 5 . . . 4 Fun ℤ
543fdmi 6518 . . . . 5 dom ℤ = ℤ
5518, 54sseqtrri 4003 . . . 4 𝑍 ⊆ dom ℤ
56 funimass4 6724 . . . 4 ((Fun ℤ𝑍 ⊆ dom ℤ) → ((ℤ𝑍) ⊆ (ran ℤt 𝑍) ↔ ∀𝑥𝑍 (ℤ𝑥) ∈ (ran ℤt 𝑍)))
5753, 55, 56mp2an 690 . . 3 ((ℤ𝑍) ⊆ (ran ℤt 𝑍) ↔ ∀𝑥𝑍 (ℤ𝑥) ∈ (ran ℤt 𝑍))
5851, 57sylibr 236 . 2 (𝑀 ∈ ℤ → (ℤ𝑍) ⊆ (ran ℤt 𝑍))
5937, 58eqssd 3983 1 (𝑀 ∈ ℤ → (ran ℤt 𝑍) = (ℤ𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  wral 3138  Vcvv 3494  cin 3934  wss 3935  ifcif 4466  𝒫 cpw 4538   class class class wbr 5058  cmpt 5138  dom cdm 5549  ran crn 5550  cima 5552  Fun wfun 6343   Fn wfn 6344  wf 6345  cfv 6349  (class class class)co 7150  cle 10670  cz 11975  cuz 12237  t crest 16688
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-pre-lttri 10605  ax-pre-lttrn 10606
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-po 5468  df-so 5469  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-ov 7153  df-oprab 7154  df-mpo 7155  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-neg 10867  df-z 11976  df-uz 12238  df-rest 16690
This theorem is referenced by:  uzfbas  22500
  Copyright terms: Public domain W3C validator