MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uzss Structured version   Visualization version   GIF version

Theorem uzss 11900
Description: Subset relationship for two sets of upper integers. (Contributed by NM, 5-Sep-2005.)
Assertion
Ref Expression
uzss (𝑁 ∈ (ℤ𝑀) → (ℤ𝑁) ⊆ (ℤ𝑀))

Proof of Theorem uzss
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 eluzle 11892 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → 𝑀𝑁)
21adantr 472 . . . . 5 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑘 ∈ ℤ) → 𝑀𝑁)
3 eluzel2 11884 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
4 eluzelz 11889 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
53, 4jca 555 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
6 zletr 11613 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((𝑀𝑁𝑁𝑘) → 𝑀𝑘))
763expa 1112 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑘 ∈ ℤ) → ((𝑀𝑁𝑁𝑘) → 𝑀𝑘))
85, 7sylan 489 . . . . 5 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑘 ∈ ℤ) → ((𝑀𝑁𝑁𝑘) → 𝑀𝑘))
92, 8mpand 713 . . . 4 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑘 ∈ ℤ) → (𝑁𝑘𝑀𝑘))
109imdistanda 731 . . 3 (𝑁 ∈ (ℤ𝑀) → ((𝑘 ∈ ℤ ∧ 𝑁𝑘) → (𝑘 ∈ ℤ ∧ 𝑀𝑘)))
11 eluz1 11883 . . . 4 (𝑁 ∈ ℤ → (𝑘 ∈ (ℤ𝑁) ↔ (𝑘 ∈ ℤ ∧ 𝑁𝑘)))
124, 11syl 17 . . 3 (𝑁 ∈ (ℤ𝑀) → (𝑘 ∈ (ℤ𝑁) ↔ (𝑘 ∈ ℤ ∧ 𝑁𝑘)))
13 eluz1 11883 . . . 4 (𝑀 ∈ ℤ → (𝑘 ∈ (ℤ𝑀) ↔ (𝑘 ∈ ℤ ∧ 𝑀𝑘)))
143, 13syl 17 . . 3 (𝑁 ∈ (ℤ𝑀) → (𝑘 ∈ (ℤ𝑀) ↔ (𝑘 ∈ ℤ ∧ 𝑀𝑘)))
1510, 12, 143imtr4d 283 . 2 (𝑁 ∈ (ℤ𝑀) → (𝑘 ∈ (ℤ𝑁) → 𝑘 ∈ (ℤ𝑀)))
1615ssrdv 3750 1 (𝑁 ∈ (ℤ𝑀) → (ℤ𝑁) ⊆ (ℤ𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  wcel 2139  wss 3715   class class class wbr 4804  cfv 6049  cle 10267  cz 11569  cuz 11879
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-pre-lttri 10202  ax-pre-lttrn 10203
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-ov 6816  df-er 7911  df-en 8122  df-dom 8123  df-sdom 8124  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-neg 10461  df-z 11570  df-uz 11880
This theorem is referenced by:  uzin  11913  uznnssnn  11928  fzopth  12571  4fvwrd4  12653  fzouzsplit  12697  seqfeq2  13018  rexuzre  14291  cau3lem  14293  climsup  14599  isumsplit  14771  isumrpcl  14774  cvgrat  14814  clim2prod  14819  fprodntriv  14871  isprm3  15598  pcfac  15805  lmflf  22010  caucfil  23281  uniioombllem4  23554  mbflimsup  23632  ulmres  24341  ulmcaulem  24347  logfaclbnd  25146  axlowdimlem17  26037  clwwlkinwwlk  27169  fz2ssnn0  29856  poimirlem1  33723  poimirlem2  33724  poimirlem6  33728  poimirlem7  33729  poimirlem20  33742  uzssd  40132  climinf  40341  climsuse  40343  climresmpt  40394  climleltrp  40411  limsupequzlem  40457  supcnvlimsup  40475  ioodvbdlimc1lem1  40649  ioodvbdlimc1lem2  40650  ioodvbdlimc2lem  40652  meaiininclem  41206  smflimlem2  41486  smflimsuplem2  41533  smflimsuplem3  41534  smflimsuplem4  41535  smflimsuplem5  41536  smflimsuplem6  41537  smflimsuplem7  41538  fzoopth  41847
  Copyright terms: Public domain W3C validator