MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uzss Structured version   Visualization version   GIF version

Theorem uzss 12259
Description: Subset relationship for two sets of upper integers. (Contributed by NM, 5-Sep-2005.)
Assertion
Ref Expression
uzss (𝑁 ∈ (ℤ𝑀) → (ℤ𝑁) ⊆ (ℤ𝑀))

Proof of Theorem uzss
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 eluzle 12250 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → 𝑀𝑁)
21adantr 483 . . . . 5 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑘 ∈ ℤ) → 𝑀𝑁)
3 eluzel2 12242 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
4 eluzelz 12247 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
53, 4jca 514 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
6 zletr 12020 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((𝑀𝑁𝑁𝑘) → 𝑀𝑘))
763expa 1114 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑘 ∈ ℤ) → ((𝑀𝑁𝑁𝑘) → 𝑀𝑘))
85, 7sylan 582 . . . . 5 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑘 ∈ ℤ) → ((𝑀𝑁𝑁𝑘) → 𝑀𝑘))
92, 8mpand 693 . . . 4 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑘 ∈ ℤ) → (𝑁𝑘𝑀𝑘))
109imdistanda 574 . . 3 (𝑁 ∈ (ℤ𝑀) → ((𝑘 ∈ ℤ ∧ 𝑁𝑘) → (𝑘 ∈ ℤ ∧ 𝑀𝑘)))
11 eluz1 12241 . . . 4 (𝑁 ∈ ℤ → (𝑘 ∈ (ℤ𝑁) ↔ (𝑘 ∈ ℤ ∧ 𝑁𝑘)))
124, 11syl 17 . . 3 (𝑁 ∈ (ℤ𝑀) → (𝑘 ∈ (ℤ𝑁) ↔ (𝑘 ∈ ℤ ∧ 𝑁𝑘)))
13 eluz1 12241 . . . 4 (𝑀 ∈ ℤ → (𝑘 ∈ (ℤ𝑀) ↔ (𝑘 ∈ ℤ ∧ 𝑀𝑘)))
143, 13syl 17 . . 3 (𝑁 ∈ (ℤ𝑀) → (𝑘 ∈ (ℤ𝑀) ↔ (𝑘 ∈ ℤ ∧ 𝑀𝑘)))
1510, 12, 143imtr4d 296 . 2 (𝑁 ∈ (ℤ𝑀) → (𝑘 ∈ (ℤ𝑁) → 𝑘 ∈ (ℤ𝑀)))
1615ssrdv 3973 1 (𝑁 ∈ (ℤ𝑀) → (ℤ𝑁) ⊆ (ℤ𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wcel 2110  wss 3936   class class class wbr 5059  cfv 6350  cle 10670  cz 11975  cuz 12237
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-pre-lttri 10605  ax-pre-lttrn 10606
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4833  df-br 5060  df-opab 5122  df-mpt 5140  df-id 5455  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-ov 7153  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-neg 10867  df-z 11976  df-uz 12238
This theorem is referenced by:  uzin  12272  uznnssnn  12289  fzopth  12938  4fvwrd4  13021  fzouzsplit  13066  seqfeq2  13387  rexuzre  14706  cau3lem  14708  climsup  15020  isumsplit  15189  isumrpcl  15192  cvgrat  15233  clim2prod  15238  fprodntriv  15290  isprm3  16021  pcfac  16229  lmflf  22607  caucfil  23880  uniioombllem4  24181  mbflimsup  24261  ulmres  24970  ulmcaulem  24976  logfaclbnd  25792  axlowdimlem17  26738  clwwlkinwwlk  27812  fz2ssnn0  30502  poimirlem1  34887  poimirlem2  34888  poimirlem6  34892  poimirlem7  34893  poimirlem20  34906  uzssd  41673  climinf  41879  climsuse  41881  climresmpt  41932  climleltrp  41949  limsupequzlem  41995  supcnvlimsup  42013  ioodvbdlimc1lem1  42208  ioodvbdlimc1lem2  42209  ioodvbdlimc2lem  42211  meaiininclem  42761  smflimlem2  43041  smflimsuplem2  43088  smflimsuplem3  43089  smflimsuplem4  43090  smflimsuplem5  43091  smflimsuplem6  43092  smflimsuplem7  43093  fzoopth  43520
  Copyright terms: Public domain W3C validator