MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uzsupss Structured version   Visualization version   GIF version

Theorem uzsupss 12343
Description: Any bounded subset of an upper set of integers has a supremum. (Contributed by Mario Carneiro, 22-Jul-2014.) (Revised by Mario Carneiro, 21-Apr-2015.)
Hypothesis
Ref Expression
uzsupss.1 𝑍 = (ℤ𝑀)
Assertion
Ref Expression
uzsupss ((𝑀 ∈ ℤ ∧ 𝐴𝑍 ∧ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥) → ∃𝑥𝑍 (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦𝑍 (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝑀,𝑦   𝑥,𝑍
Allowed substitution hints:   𝑀(𝑧)   𝑍(𝑦,𝑧)

Proof of Theorem uzsupss
StepHypRef Expression
1 simpl1 1187 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝐴𝑍 ∧ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥) ∧ 𝐴 = ∅) → 𝑀 ∈ ℤ)
2 uzid 12261 . . . . 5 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
31, 2syl 17 . . . 4 (((𝑀 ∈ ℤ ∧ 𝐴𝑍 ∧ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥) ∧ 𝐴 = ∅) → 𝑀 ∈ (ℤ𝑀))
4 uzsupss.1 . . . 4 𝑍 = (ℤ𝑀)
53, 4eleqtrrdi 2926 . . 3 (((𝑀 ∈ ℤ ∧ 𝐴𝑍 ∧ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥) ∧ 𝐴 = ∅) → 𝑀𝑍)
6 ral0 4458 . . . 4 𝑦 ∈ ∅ ¬ 𝑀 < 𝑦
7 simpr 487 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝐴𝑍 ∧ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥) ∧ 𝐴 = ∅) → 𝐴 = ∅)
87raleqdv 3417 . . . 4 (((𝑀 ∈ ℤ ∧ 𝐴𝑍 ∧ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥) ∧ 𝐴 = ∅) → (∀𝑦𝐴 ¬ 𝑀 < 𝑦 ↔ ∀𝑦 ∈ ∅ ¬ 𝑀 < 𝑦))
96, 8mpbiri 260 . . 3 (((𝑀 ∈ ℤ ∧ 𝐴𝑍 ∧ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥) ∧ 𝐴 = ∅) → ∀𝑦𝐴 ¬ 𝑀 < 𝑦)
10 eluzle 12259 . . . . . . . 8 (𝑦 ∈ (ℤ𝑀) → 𝑀𝑦)
11 eluzel2 12251 . . . . . . . . 9 (𝑦 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
12 eluzelz 12256 . . . . . . . . 9 (𝑦 ∈ (ℤ𝑀) → 𝑦 ∈ ℤ)
13 zre 11988 . . . . . . . . . 10 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
14 zre 11988 . . . . . . . . . 10 (𝑦 ∈ ℤ → 𝑦 ∈ ℝ)
15 lenlt 10721 . . . . . . . . . 10 ((𝑀 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑀𝑦 ↔ ¬ 𝑦 < 𝑀))
1613, 14, 15syl2an 597 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑀𝑦 ↔ ¬ 𝑦 < 𝑀))
1711, 12, 16syl2anc 586 . . . . . . . 8 (𝑦 ∈ (ℤ𝑀) → (𝑀𝑦 ↔ ¬ 𝑦 < 𝑀))
1810, 17mpbid 234 . . . . . . 7 (𝑦 ∈ (ℤ𝑀) → ¬ 𝑦 < 𝑀)
1918, 4eleq2s 2933 . . . . . 6 (𝑦𝑍 → ¬ 𝑦 < 𝑀)
2019pm2.21d 121 . . . . 5 (𝑦𝑍 → (𝑦 < 𝑀 → ∃𝑧𝐴 𝑦 < 𝑧))
2120rgen 3150 . . . 4 𝑦𝑍 (𝑦 < 𝑀 → ∃𝑧𝐴 𝑦 < 𝑧)
2221a1i 11 . . 3 (((𝑀 ∈ ℤ ∧ 𝐴𝑍 ∧ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥) ∧ 𝐴 = ∅) → ∀𝑦𝑍 (𝑦 < 𝑀 → ∃𝑧𝐴 𝑦 < 𝑧))
23 breq1 5071 . . . . . . 7 (𝑥 = 𝑀 → (𝑥 < 𝑦𝑀 < 𝑦))
2423notbid 320 . . . . . 6 (𝑥 = 𝑀 → (¬ 𝑥 < 𝑦 ↔ ¬ 𝑀 < 𝑦))
2524ralbidv 3199 . . . . 5 (𝑥 = 𝑀 → (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ↔ ∀𝑦𝐴 ¬ 𝑀 < 𝑦))
26 breq2 5072 . . . . . . 7 (𝑥 = 𝑀 → (𝑦 < 𝑥𝑦 < 𝑀))
2726imbi1d 344 . . . . . 6 (𝑥 = 𝑀 → ((𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧) ↔ (𝑦 < 𝑀 → ∃𝑧𝐴 𝑦 < 𝑧)))
2827ralbidv 3199 . . . . 5 (𝑥 = 𝑀 → (∀𝑦𝑍 (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧) ↔ ∀𝑦𝑍 (𝑦 < 𝑀 → ∃𝑧𝐴 𝑦 < 𝑧)))
2925, 28anbi12d 632 . . . 4 (𝑥 = 𝑀 → ((∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦𝑍 (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)) ↔ (∀𝑦𝐴 ¬ 𝑀 < 𝑦 ∧ ∀𝑦𝑍 (𝑦 < 𝑀 → ∃𝑧𝐴 𝑦 < 𝑧))))
3029rspcev 3625 . . 3 ((𝑀𝑍 ∧ (∀𝑦𝐴 ¬ 𝑀 < 𝑦 ∧ ∀𝑦𝑍 (𝑦 < 𝑀 → ∃𝑧𝐴 𝑦 < 𝑧))) → ∃𝑥𝑍 (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦𝑍 (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
315, 9, 22, 30syl12anc 834 . 2 (((𝑀 ∈ ℤ ∧ 𝐴𝑍 ∧ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥) ∧ 𝐴 = ∅) → ∃𝑥𝑍 (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦𝑍 (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
32 simpl2 1188 . . 3 (((𝑀 ∈ ℤ ∧ 𝐴𝑍 ∧ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥) ∧ 𝐴 ≠ ∅) → 𝐴𝑍)
33 uzssz 12267 . . . . . 6 (ℤ𝑀) ⊆ ℤ
344, 33eqsstri 4003 . . . . 5 𝑍 ⊆ ℤ
3532, 34sstrdi 3981 . . . 4 (((𝑀 ∈ ℤ ∧ 𝐴𝑍 ∧ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥) ∧ 𝐴 ≠ ∅) → 𝐴 ⊆ ℤ)
36 simpr 487 . . . 4 (((𝑀 ∈ ℤ ∧ 𝐴𝑍 ∧ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥) ∧ 𝐴 ≠ ∅) → 𝐴 ≠ ∅)
37 simpl3 1189 . . . 4 (((𝑀 ∈ ℤ ∧ 𝐴𝑍 ∧ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥) ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥)
38 zsupss 12340 . . . 4 ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥) → ∃𝑥𝐴 (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦𝑍 (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
3935, 36, 37, 38syl3anc 1367 . . 3 (((𝑀 ∈ ℤ ∧ 𝐴𝑍 ∧ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥) ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴 (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦𝑍 (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
40 ssrexv 4036 . . 3 (𝐴𝑍 → (∃𝑥𝐴 (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦𝑍 (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)) → ∃𝑥𝑍 (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦𝑍 (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))))
4132, 39, 40sylc 65 . 2 (((𝑀 ∈ ℤ ∧ 𝐴𝑍 ∧ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥) ∧ 𝐴 ≠ ∅) → ∃𝑥𝑍 (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦𝑍 (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
4231, 41pm2.61dane 3106 1 ((𝑀 ∈ ℤ ∧ 𝐴𝑍 ∧ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥) → ∃𝑥𝑍 (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦𝑍 (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wne 3018  wral 3140  wrex 3141  wss 3938  c0 4293   class class class wbr 5068  cfv 6357  cr 10538   < clt 10677  cle 10678  cz 11984  cuz 12246
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-sup 8908  df-inf 8909  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-n0 11901  df-z 11985  df-uz 12247
This theorem is referenced by:  dgrcl  24825  dgrub  24826  dgrlb  24828  oddpwdc  31614
  Copyright terms: Public domain W3C validator