MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uztrn Structured version   Visualization version   GIF version

Theorem uztrn 12264
Description: Transitive law for sets of upper integers. (Contributed by NM, 20-Sep-2005.)
Assertion
Ref Expression
uztrn ((𝑀 ∈ (ℤ𝐾) ∧ 𝐾 ∈ (ℤ𝑁)) → 𝑀 ∈ (ℤ𝑁))

Proof of Theorem uztrn
StepHypRef Expression
1 eluzel2 12251 . . 3 (𝐾 ∈ (ℤ𝑁) → 𝑁 ∈ ℤ)
21adantl 484 . 2 ((𝑀 ∈ (ℤ𝐾) ∧ 𝐾 ∈ (ℤ𝑁)) → 𝑁 ∈ ℤ)
3 eluzelz 12256 . . 3 (𝑀 ∈ (ℤ𝐾) → 𝑀 ∈ ℤ)
43adantr 483 . 2 ((𝑀 ∈ (ℤ𝐾) ∧ 𝐾 ∈ (ℤ𝑁)) → 𝑀 ∈ ℤ)
5 eluzle 12259 . . . 4 (𝐾 ∈ (ℤ𝑁) → 𝑁𝐾)
65adantl 484 . . 3 ((𝑀 ∈ (ℤ𝐾) ∧ 𝐾 ∈ (ℤ𝑁)) → 𝑁𝐾)
7 eluzle 12259 . . . 4 (𝑀 ∈ (ℤ𝐾) → 𝐾𝑀)
87adantr 483 . . 3 ((𝑀 ∈ (ℤ𝐾) ∧ 𝐾 ∈ (ℤ𝑁)) → 𝐾𝑀)
9 eluzelz 12256 . . . 4 (𝐾 ∈ (ℤ𝑁) → 𝐾 ∈ ℤ)
10 zletr 12029 . . . 4 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝑁𝐾𝐾𝑀) → 𝑁𝑀))
111, 9, 4, 10syl2an23an 1419 . . 3 ((𝑀 ∈ (ℤ𝐾) ∧ 𝐾 ∈ (ℤ𝑁)) → ((𝑁𝐾𝐾𝑀) → 𝑁𝑀))
126, 8, 11mp2and 697 . 2 ((𝑀 ∈ (ℤ𝐾) ∧ 𝐾 ∈ (ℤ𝑁)) → 𝑁𝑀)
13 eluz2 12252 . 2 (𝑀 ∈ (ℤ𝑁) ↔ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁𝑀))
142, 4, 12, 13syl3anbrc 1339 1 ((𝑀 ∈ (ℤ𝐾) ∧ 𝐾 ∈ (ℤ𝑁)) → 𝑀 ∈ (ℤ𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  wcel 2113   class class class wbr 5069  cfv 6358  cle 10679  cz 11984  cuz 12246
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-pre-lttri 10614  ax-pre-lttrn 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4842  df-br 5070  df-opab 5132  df-mpt 5150  df-id 5463  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-ov 7162  df-er 8292  df-en 8513  df-dom 8514  df-sdom 8515  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-neg 10876  df-z 11985  df-uz 12247
This theorem is referenced by:  uztrn2  12265  fzsplit2  12935  fzass4  12948  fzss1  12949  fzss2  12950  uzsplit  12982  seqfveq2  13395  sermono  13405  seqsplit  13406  seqid2  13419  fzsdom2  13792  seqcoll  13825  spllen  14119  splfv2a  14121  splval2  14122  climcndslem1  15207  mertenslem1  15243  ntrivcvgfvn0  15258  zprod  15294  dvdsfac  15679  smupvallem  15835  vdwlem2  16321  vdwlem6  16325  efgredleme  18872  bposlem6  25868  dchrisumlem2  26069  axlowdimlem16  26746  fzsplit3  30520  sseqf  31654  ballotlemsima  31777  ballotlemfrc  31788  climuzcnv  32918  seqpo  35026  incsequz2  35028  mettrifi  35036  monotuz  39544
  Copyright terms: Public domain W3C validator