MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uzwo Structured version   Visualization version   GIF version

Theorem uzwo 11702
Description: Well-ordering principle: any nonempty subset of an upper set of integers has the least element. (Contributed by NM, 8-Oct-2005.)
Assertion
Ref Expression
uzwo ((𝑆 ⊆ (ℤ𝑀) ∧ 𝑆 ≠ ∅) → ∃𝑗𝑆𝑘𝑆 𝑗𝑘)
Distinct variable group:   𝑗,𝑘,𝑆
Allowed substitution hints:   𝑀(𝑗,𝑘)

Proof of Theorem uzwo
Dummy variables 𝑡 𝑛 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 4621 . . . . . . . . . . . 12 ( = 𝑀 → (𝑡𝑀𝑡))
21ralbidv 2981 . . . . . . . . . . 11 ( = 𝑀 → (∀𝑡𝑆 𝑡 ↔ ∀𝑡𝑆 𝑀𝑡))
32imbi2d 330 . . . . . . . . . 10 ( = 𝑀 → (((𝑆 ⊆ (ℤ𝑀) ∧ ¬ ∃𝑗𝑆𝑡𝑆 𝑗𝑡) → ∀𝑡𝑆 𝑡) ↔ ((𝑆 ⊆ (ℤ𝑀) ∧ ¬ ∃𝑗𝑆𝑡𝑆 𝑗𝑡) → ∀𝑡𝑆 𝑀𝑡)))
4 breq1 4621 . . . . . . . . . . . 12 ( = 𝑚 → (𝑡𝑚𝑡))
54ralbidv 2981 . . . . . . . . . . 11 ( = 𝑚 → (∀𝑡𝑆 𝑡 ↔ ∀𝑡𝑆 𝑚𝑡))
65imbi2d 330 . . . . . . . . . 10 ( = 𝑚 → (((𝑆 ⊆ (ℤ𝑀) ∧ ¬ ∃𝑗𝑆𝑡𝑆 𝑗𝑡) → ∀𝑡𝑆 𝑡) ↔ ((𝑆 ⊆ (ℤ𝑀) ∧ ¬ ∃𝑗𝑆𝑡𝑆 𝑗𝑡) → ∀𝑡𝑆 𝑚𝑡)))
7 breq1 4621 . . . . . . . . . . . 12 ( = (𝑚 + 1) → (𝑡 ↔ (𝑚 + 1) ≤ 𝑡))
87ralbidv 2981 . . . . . . . . . . 11 ( = (𝑚 + 1) → (∀𝑡𝑆 𝑡 ↔ ∀𝑡𝑆 (𝑚 + 1) ≤ 𝑡))
98imbi2d 330 . . . . . . . . . 10 ( = (𝑚 + 1) → (((𝑆 ⊆ (ℤ𝑀) ∧ ¬ ∃𝑗𝑆𝑡𝑆 𝑗𝑡) → ∀𝑡𝑆 𝑡) ↔ ((𝑆 ⊆ (ℤ𝑀) ∧ ¬ ∃𝑗𝑆𝑡𝑆 𝑗𝑡) → ∀𝑡𝑆 (𝑚 + 1) ≤ 𝑡)))
10 breq1 4621 . . . . . . . . . . . 12 ( = 𝑛 → (𝑡𝑛𝑡))
1110ralbidv 2981 . . . . . . . . . . 11 ( = 𝑛 → (∀𝑡𝑆 𝑡 ↔ ∀𝑡𝑆 𝑛𝑡))
1211imbi2d 330 . . . . . . . . . 10 ( = 𝑛 → (((𝑆 ⊆ (ℤ𝑀) ∧ ¬ ∃𝑗𝑆𝑡𝑆 𝑗𝑡) → ∀𝑡𝑆 𝑡) ↔ ((𝑆 ⊆ (ℤ𝑀) ∧ ¬ ∃𝑗𝑆𝑡𝑆 𝑗𝑡) → ∀𝑡𝑆 𝑛𝑡)))
13 ssel 3581 . . . . . . . . . . . . . 14 (𝑆 ⊆ (ℤ𝑀) → (𝑡𝑆𝑡 ∈ (ℤ𝑀)))
14 eluzle 11651 . . . . . . . . . . . . . 14 (𝑡 ∈ (ℤ𝑀) → 𝑀𝑡)
1513, 14syl6 35 . . . . . . . . . . . . 13 (𝑆 ⊆ (ℤ𝑀) → (𝑡𝑆𝑀𝑡))
1615ralrimiv 2960 . . . . . . . . . . . 12 (𝑆 ⊆ (ℤ𝑀) → ∀𝑡𝑆 𝑀𝑡)
1716adantr 481 . . . . . . . . . . 11 ((𝑆 ⊆ (ℤ𝑀) ∧ ¬ ∃𝑗𝑆𝑡𝑆 𝑗𝑡) → ∀𝑡𝑆 𝑀𝑡)
1817a1i 11 . . . . . . . . . 10 (𝑀 ∈ ℤ → ((𝑆 ⊆ (ℤ𝑀) ∧ ¬ ∃𝑗𝑆𝑡𝑆 𝑗𝑡) → ∀𝑡𝑆 𝑀𝑡))
19 uzssz 11658 . . . . . . . . . . . . 13 (ℤ𝑀) ⊆ ℤ
20 sstr 3595 . . . . . . . . . . . . 13 ((𝑆 ⊆ (ℤ𝑀) ∧ (ℤ𝑀) ⊆ ℤ) → 𝑆 ⊆ ℤ)
2119, 20mpan2 706 . . . . . . . . . . . 12 (𝑆 ⊆ (ℤ𝑀) → 𝑆 ⊆ ℤ)
22 eluzelz 11648 . . . . . . . . . . . . 13 (𝑚 ∈ (ℤ𝑀) → 𝑚 ∈ ℤ)
23 breq1 4621 . . . . . . . . . . . . . . . . . . . 20 (𝑗 = 𝑚 → (𝑗𝑡𝑚𝑡))
2423ralbidv 2981 . . . . . . . . . . . . . . . . . . 19 (𝑗 = 𝑚 → (∀𝑡𝑆 𝑗𝑡 ↔ ∀𝑡𝑆 𝑚𝑡))
2524rspcev 3298 . . . . . . . . . . . . . . . . . 18 ((𝑚𝑆 ∧ ∀𝑡𝑆 𝑚𝑡) → ∃𝑗𝑆𝑡𝑆 𝑗𝑡)
2625expcom 451 . . . . . . . . . . . . . . . . 17 (∀𝑡𝑆 𝑚𝑡 → (𝑚𝑆 → ∃𝑗𝑆𝑡𝑆 𝑗𝑡))
2726con3rr3 151 . . . . . . . . . . . . . . . 16 (¬ ∃𝑗𝑆𝑡𝑆 𝑗𝑡 → (∀𝑡𝑆 𝑚𝑡 → ¬ 𝑚𝑆))
28 ssel2 3582 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑆 ⊆ ℤ ∧ 𝑡𝑆) → 𝑡 ∈ ℤ)
29 zre 11332 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑚 ∈ ℤ → 𝑚 ∈ ℝ)
30 zre 11332 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑡 ∈ ℤ → 𝑡 ∈ ℝ)
31 letri3 10074 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑚 ∈ ℝ ∧ 𝑡 ∈ ℝ) → (𝑚 = 𝑡 ↔ (𝑚𝑡𝑡𝑚)))
3229, 30, 31syl2an 494 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑚 ∈ ℤ ∧ 𝑡 ∈ ℤ) → (𝑚 = 𝑡 ↔ (𝑚𝑡𝑡𝑚)))
33 zleltp1 11379 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑡 ∈ ℤ ∧ 𝑚 ∈ ℤ) → (𝑡𝑚𝑡 < (𝑚 + 1)))
34 peano2re 10160 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑚 ∈ ℝ → (𝑚 + 1) ∈ ℝ)
3529, 34syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑚 ∈ ℤ → (𝑚 + 1) ∈ ℝ)
36 ltnle 10068 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑡 ∈ ℝ ∧ (𝑚 + 1) ∈ ℝ) → (𝑡 < (𝑚 + 1) ↔ ¬ (𝑚 + 1) ≤ 𝑡))
3730, 35, 36syl2an 494 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑡 ∈ ℤ ∧ 𝑚 ∈ ℤ) → (𝑡 < (𝑚 + 1) ↔ ¬ (𝑚 + 1) ≤ 𝑡))
3833, 37bitrd 268 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑡 ∈ ℤ ∧ 𝑚 ∈ ℤ) → (𝑡𝑚 ↔ ¬ (𝑚 + 1) ≤ 𝑡))
3938ancoms 469 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑚 ∈ ℤ ∧ 𝑡 ∈ ℤ) → (𝑡𝑚 ↔ ¬ (𝑚 + 1) ≤ 𝑡))
4039anbi2d 739 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑚 ∈ ℤ ∧ 𝑡 ∈ ℤ) → ((𝑚𝑡𝑡𝑚) ↔ (𝑚𝑡 ∧ ¬ (𝑚 + 1) ≤ 𝑡)))
4132, 40bitrd 268 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑚 ∈ ℤ ∧ 𝑡 ∈ ℤ) → (𝑚 = 𝑡 ↔ (𝑚𝑡 ∧ ¬ (𝑚 + 1) ≤ 𝑡)))
4228, 41sylan2 491 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑚 ∈ ℤ ∧ (𝑆 ⊆ ℤ ∧ 𝑡𝑆)) → (𝑚 = 𝑡 ↔ (𝑚𝑡 ∧ ¬ (𝑚 + 1) ≤ 𝑡)))
43 eleq1a 2693 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑡𝑆 → (𝑚 = 𝑡𝑚𝑆))
4443ad2antll 764 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑚 ∈ ℤ ∧ (𝑆 ⊆ ℤ ∧ 𝑡𝑆)) → (𝑚 = 𝑡𝑚𝑆))
4542, 44sylbird 250 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑚 ∈ ℤ ∧ (𝑆 ⊆ ℤ ∧ 𝑡𝑆)) → ((𝑚𝑡 ∧ ¬ (𝑚 + 1) ≤ 𝑡) → 𝑚𝑆))
4645expd 452 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑚 ∈ ℤ ∧ (𝑆 ⊆ ℤ ∧ 𝑡𝑆)) → (𝑚𝑡 → (¬ (𝑚 + 1) ≤ 𝑡𝑚𝑆)))
47 con1 143 . . . . . . . . . . . . . . . . . . . . . . 23 ((¬ (𝑚 + 1) ≤ 𝑡𝑚𝑆) → (¬ 𝑚𝑆 → (𝑚 + 1) ≤ 𝑡))
4846, 47syl6 35 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑚 ∈ ℤ ∧ (𝑆 ⊆ ℤ ∧ 𝑡𝑆)) → (𝑚𝑡 → (¬ 𝑚𝑆 → (𝑚 + 1) ≤ 𝑡)))
4948com23 86 . . . . . . . . . . . . . . . . . . . . 21 ((𝑚 ∈ ℤ ∧ (𝑆 ⊆ ℤ ∧ 𝑡𝑆)) → (¬ 𝑚𝑆 → (𝑚𝑡 → (𝑚 + 1) ≤ 𝑡)))
5049exp32 630 . . . . . . . . . . . . . . . . . . . 20 (𝑚 ∈ ℤ → (𝑆 ⊆ ℤ → (𝑡𝑆 → (¬ 𝑚𝑆 → (𝑚𝑡 → (𝑚 + 1) ≤ 𝑡)))))
5150com34 91 . . . . . . . . . . . . . . . . . . 19 (𝑚 ∈ ℤ → (𝑆 ⊆ ℤ → (¬ 𝑚𝑆 → (𝑡𝑆 → (𝑚𝑡 → (𝑚 + 1) ≤ 𝑡)))))
5251imp41 618 . . . . . . . . . . . . . . . . . 18 ((((𝑚 ∈ ℤ ∧ 𝑆 ⊆ ℤ) ∧ ¬ 𝑚𝑆) ∧ 𝑡𝑆) → (𝑚𝑡 → (𝑚 + 1) ≤ 𝑡))
5352ralimdva 2957 . . . . . . . . . . . . . . . . 17 (((𝑚 ∈ ℤ ∧ 𝑆 ⊆ ℤ) ∧ ¬ 𝑚𝑆) → (∀𝑡𝑆 𝑚𝑡 → ∀𝑡𝑆 (𝑚 + 1) ≤ 𝑡))
5453ex 450 . . . . . . . . . . . . . . . 16 ((𝑚 ∈ ℤ ∧ 𝑆 ⊆ ℤ) → (¬ 𝑚𝑆 → (∀𝑡𝑆 𝑚𝑡 → ∀𝑡𝑆 (𝑚 + 1) ≤ 𝑡)))
5527, 54sylan9r 689 . . . . . . . . . . . . . . 15 (((𝑚 ∈ ℤ ∧ 𝑆 ⊆ ℤ) ∧ ¬ ∃𝑗𝑆𝑡𝑆 𝑗𝑡) → (∀𝑡𝑆 𝑚𝑡 → (∀𝑡𝑆 𝑚𝑡 → ∀𝑡𝑆 (𝑚 + 1) ≤ 𝑡)))
5655pm2.43d 53 . . . . . . . . . . . . . 14 (((𝑚 ∈ ℤ ∧ 𝑆 ⊆ ℤ) ∧ ¬ ∃𝑗𝑆𝑡𝑆 𝑗𝑡) → (∀𝑡𝑆 𝑚𝑡 → ∀𝑡𝑆 (𝑚 + 1) ≤ 𝑡))
5756expl 647 . . . . . . . . . . . . 13 (𝑚 ∈ ℤ → ((𝑆 ⊆ ℤ ∧ ¬ ∃𝑗𝑆𝑡𝑆 𝑗𝑡) → (∀𝑡𝑆 𝑚𝑡 → ∀𝑡𝑆 (𝑚 + 1) ≤ 𝑡)))
5822, 57syl 17 . . . . . . . . . . . 12 (𝑚 ∈ (ℤ𝑀) → ((𝑆 ⊆ ℤ ∧ ¬ ∃𝑗𝑆𝑡𝑆 𝑗𝑡) → (∀𝑡𝑆 𝑚𝑡 → ∀𝑡𝑆 (𝑚 + 1) ≤ 𝑡)))
5921, 58sylani 685 . . . . . . . . . . 11 (𝑚 ∈ (ℤ𝑀) → ((𝑆 ⊆ (ℤ𝑀) ∧ ¬ ∃𝑗𝑆𝑡𝑆 𝑗𝑡) → (∀𝑡𝑆 𝑚𝑡 → ∀𝑡𝑆 (𝑚 + 1) ≤ 𝑡)))
6059a2d 29 . . . . . . . . . 10 (𝑚 ∈ (ℤ𝑀) → (((𝑆 ⊆ (ℤ𝑀) ∧ ¬ ∃𝑗𝑆𝑡𝑆 𝑗𝑡) → ∀𝑡𝑆 𝑚𝑡) → ((𝑆 ⊆ (ℤ𝑀) ∧ ¬ ∃𝑗𝑆𝑡𝑆 𝑗𝑡) → ∀𝑡𝑆 (𝑚 + 1) ≤ 𝑡)))
613, 6, 9, 12, 18, 60uzind4 11697 . . . . . . . . 9 (𝑛 ∈ (ℤ𝑀) → ((𝑆 ⊆ (ℤ𝑀) ∧ ¬ ∃𝑗𝑆𝑡𝑆 𝑗𝑡) → ∀𝑡𝑆 𝑛𝑡))
62 breq1 4621 . . . . . . . . . . . . . 14 (𝑗 = 𝑛 → (𝑗𝑡𝑛𝑡))
6362ralbidv 2981 . . . . . . . . . . . . 13 (𝑗 = 𝑛 → (∀𝑡𝑆 𝑗𝑡 ↔ ∀𝑡𝑆 𝑛𝑡))
6463rspcev 3298 . . . . . . . . . . . 12 ((𝑛𝑆 ∧ ∀𝑡𝑆 𝑛𝑡) → ∃𝑗𝑆𝑡𝑆 𝑗𝑡)
6564expcom 451 . . . . . . . . . . 11 (∀𝑡𝑆 𝑛𝑡 → (𝑛𝑆 → ∃𝑗𝑆𝑡𝑆 𝑗𝑡))
6665con3rr3 151 . . . . . . . . . 10 (¬ ∃𝑗𝑆𝑡𝑆 𝑗𝑡 → (∀𝑡𝑆 𝑛𝑡 → ¬ 𝑛𝑆))
6766adantl 482 . . . . . . . . 9 ((𝑆 ⊆ (ℤ𝑀) ∧ ¬ ∃𝑗𝑆𝑡𝑆 𝑗𝑡) → (∀𝑡𝑆 𝑛𝑡 → ¬ 𝑛𝑆))
6861, 67sylcom 30 . . . . . . . 8 (𝑛 ∈ (ℤ𝑀) → ((𝑆 ⊆ (ℤ𝑀) ∧ ¬ ∃𝑗𝑆𝑡𝑆 𝑗𝑡) → ¬ 𝑛𝑆))
69 ssel 3581 . . . . . . . . . 10 (𝑆 ⊆ (ℤ𝑀) → (𝑛𝑆𝑛 ∈ (ℤ𝑀)))
7069con3rr3 151 . . . . . . . . 9 𝑛 ∈ (ℤ𝑀) → (𝑆 ⊆ (ℤ𝑀) → ¬ 𝑛𝑆))
7170adantrd 484 . . . . . . . 8 𝑛 ∈ (ℤ𝑀) → ((𝑆 ⊆ (ℤ𝑀) ∧ ¬ ∃𝑗𝑆𝑡𝑆 𝑗𝑡) → ¬ 𝑛𝑆))
7268, 71pm2.61i 176 . . . . . . 7 ((𝑆 ⊆ (ℤ𝑀) ∧ ¬ ∃𝑗𝑆𝑡𝑆 𝑗𝑡) → ¬ 𝑛𝑆)
7372ex 450 . . . . . 6 (𝑆 ⊆ (ℤ𝑀) → (¬ ∃𝑗𝑆𝑡𝑆 𝑗𝑡 → ¬ 𝑛𝑆))
7473alrimdv 1854 . . . . 5 (𝑆 ⊆ (ℤ𝑀) → (¬ ∃𝑗𝑆𝑡𝑆 𝑗𝑡 → ∀𝑛 ¬ 𝑛𝑆))
75 eq0 3910 . . . . 5 (𝑆 = ∅ ↔ ∀𝑛 ¬ 𝑛𝑆)
7674, 75syl6ibr 242 . . . 4 (𝑆 ⊆ (ℤ𝑀) → (¬ ∃𝑗𝑆𝑡𝑆 𝑗𝑡𝑆 = ∅))
7776necon1ad 2807 . . 3 (𝑆 ⊆ (ℤ𝑀) → (𝑆 ≠ ∅ → ∃𝑗𝑆𝑡𝑆 𝑗𝑡))
7877imp 445 . 2 ((𝑆 ⊆ (ℤ𝑀) ∧ 𝑆 ≠ ∅) → ∃𝑗𝑆𝑡𝑆 𝑗𝑡)
79 breq2 4622 . . . 4 (𝑡 = 𝑘 → (𝑗𝑡𝑗𝑘))
8079cbvralv 3162 . . 3 (∀𝑡𝑆 𝑗𝑡 ↔ ∀𝑘𝑆 𝑗𝑘)
8180rexbii 3035 . 2 (∃𝑗𝑆𝑡𝑆 𝑗𝑡 ↔ ∃𝑗𝑆𝑘𝑆 𝑗𝑘)
8278, 81sylib 208 1 ((𝑆 ⊆ (ℤ𝑀) ∧ 𝑆 ≠ ∅) → ∃𝑗𝑆𝑘𝑆 𝑗𝑘)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  wal 1478   = wceq 1480  wcel 1987  wne 2790  wral 2907  wrex 2908  wss 3559  c0 3896   class class class wbr 4618  cfv 5852  (class class class)co 6610  cr 9886  1c1 9888   + caddc 9890   < clt 10025  cle 10026  cz 11328  cuz 11638
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-cnex 9943  ax-resscn 9944  ax-1cn 9945  ax-icn 9946  ax-addcl 9947  ax-addrcl 9948  ax-mulcl 9949  ax-mulrcl 9950  ax-mulcom 9951  ax-addass 9952  ax-mulass 9953  ax-distr 9954  ax-i2m1 9955  ax-1ne0 9956  ax-1rid 9957  ax-rnegex 9958  ax-rrecex 9959  ax-cnre 9960  ax-pre-lttri 9961  ax-pre-lttrn 9962  ax-pre-ltadd 9963  ax-pre-mulgt0 9964
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-om 7020  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-er 7694  df-en 7907  df-dom 7908  df-sdom 7909  df-pnf 10027  df-mnf 10028  df-xr 10029  df-ltxr 10030  df-le 10031  df-sub 10219  df-neg 10220  df-nn 10972  df-n0 11244  df-z 11329  df-uz 11639
This theorem is referenced by:  uzwo2  11703  nnwo  11704  infssuzle  11722  infssuzcl  11723  uzwo4  38731
  Copyright terms: Public domain W3C validator