MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uzwo2 Structured version   Visualization version   GIF version

Theorem uzwo2 11945
Description: Well-ordering principle: any nonempty subset of an upper set of integers has a unique least element. (Contributed by NM, 8-Oct-2005.)
Assertion
Ref Expression
uzwo2 ((𝑆 ⊆ (ℤ𝑀) ∧ 𝑆 ≠ ∅) → ∃!𝑗𝑆𝑘𝑆 𝑗𝑘)
Distinct variable group:   𝑗,𝑘,𝑆
Allowed substitution hints:   𝑀(𝑗,𝑘)

Proof of Theorem uzwo2
StepHypRef Expression
1 uzwo 11944 . 2 ((𝑆 ⊆ (ℤ𝑀) ∧ 𝑆 ≠ ∅) → ∃𝑗𝑆𝑘𝑆 𝑗𝑘)
2 uzssz 11899 . . . . 5 (ℤ𝑀) ⊆ ℤ
3 zssre 11576 . . . . 5 ℤ ⊆ ℝ
42, 3sstri 3753 . . . 4 (ℤ𝑀) ⊆ ℝ
5 sstr 3752 . . . 4 ((𝑆 ⊆ (ℤ𝑀) ∧ (ℤ𝑀) ⊆ ℝ) → 𝑆 ⊆ ℝ)
64, 5mpan2 709 . . 3 (𝑆 ⊆ (ℤ𝑀) → 𝑆 ⊆ ℝ)
7 lbreu 11165 . . 3 ((𝑆 ⊆ ℝ ∧ ∃𝑗𝑆𝑘𝑆 𝑗𝑘) → ∃!𝑗𝑆𝑘𝑆 𝑗𝑘)
86, 7sylan 489 . 2 ((𝑆 ⊆ (ℤ𝑀) ∧ ∃𝑗𝑆𝑘𝑆 𝑗𝑘) → ∃!𝑗𝑆𝑘𝑆 𝑗𝑘)
91, 8syldan 488 1 ((𝑆 ⊆ (ℤ𝑀) ∧ 𝑆 ≠ ∅) → ∃!𝑗𝑆𝑘𝑆 𝑗𝑘)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  wne 2932  wral 3050  wrex 3051  ∃!wreu 3052  wss 3715  c0 4058   class class class wbr 4804  cfv 6049  cr 10127  cle 10267  cz 11569  cuz 11879
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-er 7911  df-en 8122  df-dom 8123  df-sdom 8124  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-nn 11213  df-n0 11485  df-z 11570  df-uz 11880
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator