![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > vafval | Structured version Visualization version GIF version |
Description: Value of the function for the vector addition (group) operation on a normed complex vector space. (Contributed by NM, 23-Apr-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
vafval.2 | ⊢ 𝐺 = ( +𝑣 ‘𝑈) |
Ref | Expression |
---|---|
vafval | ⊢ 𝐺 = (1st ‘(1st ‘𝑈)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vafval.2 | . 2 ⊢ 𝐺 = ( +𝑣 ‘𝑈) | |
2 | df-va 27680 | . . . . 5 ⊢ +𝑣 = (1st ∘ 1st ) | |
3 | 2 | fveq1i 6305 | . . . 4 ⊢ ( +𝑣 ‘𝑈) = ((1st ∘ 1st )‘𝑈) |
4 | fo1st 7305 | . . . . . 6 ⊢ 1st :V–onto→V | |
5 | fof 6228 | . . . . . 6 ⊢ (1st :V–onto→V → 1st :V⟶V) | |
6 | 4, 5 | ax-mp 5 | . . . . 5 ⊢ 1st :V⟶V |
7 | fvco3 6389 | . . . . 5 ⊢ ((1st :V⟶V ∧ 𝑈 ∈ V) → ((1st ∘ 1st )‘𝑈) = (1st ‘(1st ‘𝑈))) | |
8 | 6, 7 | mpan 708 | . . . 4 ⊢ (𝑈 ∈ V → ((1st ∘ 1st )‘𝑈) = (1st ‘(1st ‘𝑈))) |
9 | 3, 8 | syl5eq 2770 | . . 3 ⊢ (𝑈 ∈ V → ( +𝑣 ‘𝑈) = (1st ‘(1st ‘𝑈))) |
10 | fvprc 6298 | . . . 4 ⊢ (¬ 𝑈 ∈ V → ( +𝑣 ‘𝑈) = ∅) | |
11 | fvprc 6298 | . . . . . 6 ⊢ (¬ 𝑈 ∈ V → (1st ‘𝑈) = ∅) | |
12 | 11 | fveq2d 6308 | . . . . 5 ⊢ (¬ 𝑈 ∈ V → (1st ‘(1st ‘𝑈)) = (1st ‘∅)) |
13 | 1st0 7291 | . . . . 5 ⊢ (1st ‘∅) = ∅ | |
14 | 12, 13 | syl6req 2775 | . . . 4 ⊢ (¬ 𝑈 ∈ V → ∅ = (1st ‘(1st ‘𝑈))) |
15 | 10, 14 | eqtrd 2758 | . . 3 ⊢ (¬ 𝑈 ∈ V → ( +𝑣 ‘𝑈) = (1st ‘(1st ‘𝑈))) |
16 | 9, 15 | pm2.61i 176 | . 2 ⊢ ( +𝑣 ‘𝑈) = (1st ‘(1st ‘𝑈)) |
17 | 1, 16 | eqtri 2746 | 1 ⊢ 𝐺 = (1st ‘(1st ‘𝑈)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1596 ∈ wcel 2103 Vcvv 3304 ∅c0 4023 ∘ ccom 5222 ⟶wf 5997 –onto→wfo 5999 ‘cfv 6001 1st c1st 7283 +𝑣 cpv 27670 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1835 ax-4 1850 ax-5 1952 ax-6 2018 ax-7 2054 ax-8 2105 ax-9 2112 ax-10 2132 ax-11 2147 ax-12 2160 ax-13 2355 ax-ext 2704 ax-sep 4889 ax-nul 4897 ax-pow 4948 ax-pr 5011 ax-un 7066 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1599 df-ex 1818 df-nf 1823 df-sb 2011 df-eu 2575 df-mo 2576 df-clab 2711 df-cleq 2717 df-clel 2720 df-nfc 2855 df-ne 2897 df-ral 3019 df-rex 3020 df-rab 3023 df-v 3306 df-sbc 3542 df-dif 3683 df-un 3685 df-in 3687 df-ss 3694 df-nul 4024 df-if 4195 df-sn 4286 df-pr 4288 df-op 4292 df-uni 4545 df-br 4761 df-opab 4821 df-mpt 4838 df-id 5128 df-xp 5224 df-rel 5225 df-cnv 5226 df-co 5227 df-dm 5228 df-rn 5229 df-res 5230 df-ima 5231 df-iota 5964 df-fun 6003 df-fn 6004 df-f 6005 df-fo 6007 df-fv 6009 df-1st 7285 df-va 27680 |
This theorem is referenced by: nvvop 27694 nvablo 27701 nvsf 27704 nvscl 27711 nvsid 27712 nvsass 27713 nvdi 27715 nvdir 27716 nv2 27717 nv0 27722 nvsz 27723 nvinv 27724 cnnvg 27763 phop 27903 phpar 27909 ip0i 27910 ipdirilem 27914 h2hva 28061 hhssva 28344 hhshsslem1 28354 |
Copyright terms: Public domain | W3C validator |