MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vcass Structured version   Visualization version   GIF version

Theorem vcass 28338
Description: Associative law for the scalar product of a complex vector space. (Contributed by NM, 3-Nov-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
vciOLD.1 𝐺 = (1st𝑊)
vciOLD.2 𝑆 = (2nd𝑊)
vciOLD.3 𝑋 = ran 𝐺
Assertion
Ref Expression
vcass ((𝑊 ∈ CVecOLD ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶𝑋)) → ((𝐴 · 𝐵)𝑆𝐶) = (𝐴𝑆(𝐵𝑆𝐶)))

Proof of Theorem vcass
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vciOLD.1 . . . . . 6 𝐺 = (1st𝑊)
2 vciOLD.2 . . . . . 6 𝑆 = (2nd𝑊)
3 vciOLD.3 . . . . . 6 𝑋 = ran 𝐺
41, 2, 3vciOLD 28332 . . . . 5 (𝑊 ∈ CVecOLD → (𝐺 ∈ AbelOp ∧ 𝑆:(ℂ × 𝑋)⟶𝑋 ∧ ∀𝑥𝑋 ((1𝑆𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥)))))))
5 simpr 487 . . . . . . . . . . 11 ((((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥))) → ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥)))
65ralimi 3160 . . . . . . . . . 10 (∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥))) → ∀𝑧 ∈ ℂ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥)))
76adantl 484 . . . . . . . . 9 ((∀𝑧𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥)))) → ∀𝑧 ∈ ℂ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥)))
87ralimi 3160 . . . . . . . 8 (∀𝑦 ∈ ℂ (∀𝑧𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥)))) → ∀𝑦 ∈ ℂ ∀𝑧 ∈ ℂ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥)))
98adantl 484 . . . . . . 7 (((1𝑆𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥))))) → ∀𝑦 ∈ ℂ ∀𝑧 ∈ ℂ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥)))
109ralimi 3160 . . . . . 6 (∀𝑥𝑋 ((1𝑆𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥))))) → ∀𝑥𝑋𝑦 ∈ ℂ ∀𝑧 ∈ ℂ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥)))
11103ad2ant3 1131 . . . . 5 ((𝐺 ∈ AbelOp ∧ 𝑆:(ℂ × 𝑋)⟶𝑋 ∧ ∀𝑥𝑋 ((1𝑆𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥)))))) → ∀𝑥𝑋𝑦 ∈ ℂ ∀𝑧 ∈ ℂ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥)))
124, 11syl 17 . . . 4 (𝑊 ∈ CVecOLD → ∀𝑥𝑋𝑦 ∈ ℂ ∀𝑧 ∈ ℂ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥)))
13 oveq2 7158 . . . . . 6 (𝑥 = 𝐶 → ((𝑦 · 𝑧)𝑆𝑥) = ((𝑦 · 𝑧)𝑆𝐶))
14 oveq2 7158 . . . . . . 7 (𝑥 = 𝐶 → (𝑧𝑆𝑥) = (𝑧𝑆𝐶))
1514oveq2d 7166 . . . . . 6 (𝑥 = 𝐶 → (𝑦𝑆(𝑧𝑆𝑥)) = (𝑦𝑆(𝑧𝑆𝐶)))
1613, 15eqeq12d 2837 . . . . 5 (𝑥 = 𝐶 → (((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥)) ↔ ((𝑦 · 𝑧)𝑆𝐶) = (𝑦𝑆(𝑧𝑆𝐶))))
17 oveq1 7157 . . . . . . 7 (𝑦 = 𝐴 → (𝑦 · 𝑧) = (𝐴 · 𝑧))
1817oveq1d 7165 . . . . . 6 (𝑦 = 𝐴 → ((𝑦 · 𝑧)𝑆𝐶) = ((𝐴 · 𝑧)𝑆𝐶))
19 oveq1 7157 . . . . . 6 (𝑦 = 𝐴 → (𝑦𝑆(𝑧𝑆𝐶)) = (𝐴𝑆(𝑧𝑆𝐶)))
2018, 19eqeq12d 2837 . . . . 5 (𝑦 = 𝐴 → (((𝑦 · 𝑧)𝑆𝐶) = (𝑦𝑆(𝑧𝑆𝐶)) ↔ ((𝐴 · 𝑧)𝑆𝐶) = (𝐴𝑆(𝑧𝑆𝐶))))
21 oveq2 7158 . . . . . . 7 (𝑧 = 𝐵 → (𝐴 · 𝑧) = (𝐴 · 𝐵))
2221oveq1d 7165 . . . . . 6 (𝑧 = 𝐵 → ((𝐴 · 𝑧)𝑆𝐶) = ((𝐴 · 𝐵)𝑆𝐶))
23 oveq1 7157 . . . . . . 7 (𝑧 = 𝐵 → (𝑧𝑆𝐶) = (𝐵𝑆𝐶))
2423oveq2d 7166 . . . . . 6 (𝑧 = 𝐵 → (𝐴𝑆(𝑧𝑆𝐶)) = (𝐴𝑆(𝐵𝑆𝐶)))
2522, 24eqeq12d 2837 . . . . 5 (𝑧 = 𝐵 → (((𝐴 · 𝑧)𝑆𝐶) = (𝐴𝑆(𝑧𝑆𝐶)) ↔ ((𝐴 · 𝐵)𝑆𝐶) = (𝐴𝑆(𝐵𝑆𝐶))))
2616, 20, 25rspc3v 3635 . . . 4 ((𝐶𝑋𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∀𝑥𝑋𝑦 ∈ ℂ ∀𝑧 ∈ ℂ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥)) → ((𝐴 · 𝐵)𝑆𝐶) = (𝐴𝑆(𝐵𝑆𝐶))))
2712, 26syl5 34 . . 3 ((𝐶𝑋𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝑊 ∈ CVecOLD → ((𝐴 · 𝐵)𝑆𝐶) = (𝐴𝑆(𝐵𝑆𝐶))))
28273coml 1123 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶𝑋) → (𝑊 ∈ CVecOLD → ((𝐴 · 𝐵)𝑆𝐶) = (𝐴𝑆(𝐵𝑆𝐶))))
2928impcom 410 1 ((𝑊 ∈ CVecOLD ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶𝑋)) → ((𝐴 · 𝐵)𝑆𝐶) = (𝐴𝑆(𝐵𝑆𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1533  wcel 2110  wral 3138   × cxp 5547  ran crn 5550  wf 6345  cfv 6349  (class class class)co 7150  1st c1st 7681  2nd c2nd 7682  cc 10529  1c1 10532   + caddc 10534   · cmul 10536  AbelOpcablo 28315  CVecOLDcvc 28329
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3772  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-fv 6357  df-ov 7153  df-1st 7683  df-2nd 7684  df-vc 28330
This theorem is referenced by:  vcz  28346  nvsass  28399
  Copyright terms: Public domain W3C validator