Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  vcdi Structured version   Visualization version   GIF version

Theorem vcdi 27260
 Description: Distributive law for the scalar product of a complex vector space. (Contributed by NM, 3-Nov-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
vciOLD.1 𝐺 = (1st𝑊)
vciOLD.2 𝑆 = (2nd𝑊)
vciOLD.3 𝑋 = ran 𝐺
Assertion
Ref Expression
vcdi ((𝑊 ∈ CVecOLD ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋𝐶𝑋)) → (𝐴𝑆(𝐵𝐺𝐶)) = ((𝐴𝑆𝐵)𝐺(𝐴𝑆𝐶)))

Proof of Theorem vcdi
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vciOLD.1 . . . . . 6 𝐺 = (1st𝑊)
2 vciOLD.2 . . . . . 6 𝑆 = (2nd𝑊)
3 vciOLD.3 . . . . . 6 𝑋 = ran 𝐺
41, 2, 3vciOLD 27256 . . . . 5 (𝑊 ∈ CVecOLD → (𝐺 ∈ AbelOp ∧ 𝑆:(ℂ × 𝑋)⟶𝑋 ∧ ∀𝑥𝑋 ((1𝑆𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥)))))))
5 simpl 473 . . . . . . . . 9 ((∀𝑧𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥)))) → ∀𝑧𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)))
65ralimi 2952 . . . . . . . 8 (∀𝑦 ∈ ℂ (∀𝑧𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥)))) → ∀𝑦 ∈ ℂ ∀𝑧𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)))
76adantl 482 . . . . . . 7 (((1𝑆𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥))))) → ∀𝑦 ∈ ℂ ∀𝑧𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)))
87ralimi 2952 . . . . . 6 (∀𝑥𝑋 ((1𝑆𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥))))) → ∀𝑥𝑋𝑦 ∈ ℂ ∀𝑧𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)))
983ad2ant3 1082 . . . . 5 ((𝐺 ∈ AbelOp ∧ 𝑆:(ℂ × 𝑋)⟶𝑋 ∧ ∀𝑥𝑋 ((1𝑆𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥)))))) → ∀𝑥𝑋𝑦 ∈ ℂ ∀𝑧𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)))
104, 9syl 17 . . . 4 (𝑊 ∈ CVecOLD → ∀𝑥𝑋𝑦 ∈ ℂ ∀𝑧𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)))
11 oveq1 6612 . . . . . . 7 (𝑥 = 𝐵 → (𝑥𝐺𝑧) = (𝐵𝐺𝑧))
1211oveq2d 6621 . . . . . 6 (𝑥 = 𝐵 → (𝑦𝑆(𝑥𝐺𝑧)) = (𝑦𝑆(𝐵𝐺𝑧)))
13 oveq2 6613 . . . . . . 7 (𝑥 = 𝐵 → (𝑦𝑆𝑥) = (𝑦𝑆𝐵))
1413oveq1d 6620 . . . . . 6 (𝑥 = 𝐵 → ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) = ((𝑦𝑆𝐵)𝐺(𝑦𝑆𝑧)))
1512, 14eqeq12d 2641 . . . . 5 (𝑥 = 𝐵 → ((𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ↔ (𝑦𝑆(𝐵𝐺𝑧)) = ((𝑦𝑆𝐵)𝐺(𝑦𝑆𝑧))))
16 oveq1 6612 . . . . . 6 (𝑦 = 𝐴 → (𝑦𝑆(𝐵𝐺𝑧)) = (𝐴𝑆(𝐵𝐺𝑧)))
17 oveq1 6612 . . . . . . 7 (𝑦 = 𝐴 → (𝑦𝑆𝐵) = (𝐴𝑆𝐵))
18 oveq1 6612 . . . . . . 7 (𝑦 = 𝐴 → (𝑦𝑆𝑧) = (𝐴𝑆𝑧))
1917, 18oveq12d 6623 . . . . . 6 (𝑦 = 𝐴 → ((𝑦𝑆𝐵)𝐺(𝑦𝑆𝑧)) = ((𝐴𝑆𝐵)𝐺(𝐴𝑆𝑧)))
2016, 19eqeq12d 2641 . . . . 5 (𝑦 = 𝐴 → ((𝑦𝑆(𝐵𝐺𝑧)) = ((𝑦𝑆𝐵)𝐺(𝑦𝑆𝑧)) ↔ (𝐴𝑆(𝐵𝐺𝑧)) = ((𝐴𝑆𝐵)𝐺(𝐴𝑆𝑧))))
21 oveq2 6613 . . . . . . 7 (𝑧 = 𝐶 → (𝐵𝐺𝑧) = (𝐵𝐺𝐶))
2221oveq2d 6621 . . . . . 6 (𝑧 = 𝐶 → (𝐴𝑆(𝐵𝐺𝑧)) = (𝐴𝑆(𝐵𝐺𝐶)))
23 oveq2 6613 . . . . . . 7 (𝑧 = 𝐶 → (𝐴𝑆𝑧) = (𝐴𝑆𝐶))
2423oveq2d 6621 . . . . . 6 (𝑧 = 𝐶 → ((𝐴𝑆𝐵)𝐺(𝐴𝑆𝑧)) = ((𝐴𝑆𝐵)𝐺(𝐴𝑆𝐶)))
2522, 24eqeq12d 2641 . . . . 5 (𝑧 = 𝐶 → ((𝐴𝑆(𝐵𝐺𝑧)) = ((𝐴𝑆𝐵)𝐺(𝐴𝑆𝑧)) ↔ (𝐴𝑆(𝐵𝐺𝐶)) = ((𝐴𝑆𝐵)𝐺(𝐴𝑆𝐶))))
2615, 20, 25rspc3v 3314 . . . 4 ((𝐵𝑋𝐴 ∈ ℂ ∧ 𝐶𝑋) → (∀𝑥𝑋𝑦 ∈ ℂ ∀𝑧𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) → (𝐴𝑆(𝐵𝐺𝐶)) = ((𝐴𝑆𝐵)𝐺(𝐴𝑆𝐶))))
2710, 26syl5 34 . . 3 ((𝐵𝑋𝐴 ∈ ℂ ∧ 𝐶𝑋) → (𝑊 ∈ CVecOLD → (𝐴𝑆(𝐵𝐺𝐶)) = ((𝐴𝑆𝐵)𝐺(𝐴𝑆𝐶))))
28273com12 1266 . 2 ((𝐴 ∈ ℂ ∧ 𝐵𝑋𝐶𝑋) → (𝑊 ∈ CVecOLD → (𝐴𝑆(𝐵𝐺𝐶)) = ((𝐴𝑆𝐵)𝐺(𝐴𝑆𝐶))))
2928impcom 446 1 ((𝑊 ∈ CVecOLD ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋𝐶𝑋)) → (𝐴𝑆(𝐵𝐺𝐶)) = ((𝐴𝑆𝐵)𝐺(𝐴𝑆𝐶)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 384   ∧ w3a 1036   = wceq 1480   ∈ wcel 1992  ∀wral 2912   × cxp 5077  ran crn 5080  ⟶wf 5846  ‘cfv 5850  (class class class)co 6605  1st c1st 7114  2nd c2nd 7115  ℂcc 9879  1c1 9882   + caddc 9884   · cmul 9886  AbelOpcablo 27238  CVecOLDcvc 27253 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3193  df-sbc 3423  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3897  df-if 4064  df-sn 4154  df-pr 4156  df-op 4160  df-uni 4408  df-br 4619  df-opab 4679  df-mpt 4680  df-id 4994  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-fv 5858  df-ov 6608  df-1st 7116  df-2nd 7117  df-vc 27254 This theorem is referenced by:  nvdi  27325
 Copyright terms: Public domain W3C validator