Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  vd01 Structured version   Visualization version   GIF version

Theorem vd01 39139
Description: A virtual hypothesis virtually infers a theorem. (Contributed by Alan Sare, 14-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
vd01.1 𝜑
Assertion
Ref Expression
vd01 (   𝜓   ▶   𝜑   )

Proof of Theorem vd01
StepHypRef Expression
1 vd01.1 . . 3 𝜑
21a1i 11 . 2 (𝜓𝜑)
32dfvd1ir 39106 1 (   𝜓   ▶   𝜑   )
Colors of variables: wff setvar class
Syntax hints:  (   wvd1 39102
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-vd1 39103
This theorem is referenced by:  e210  39201  e201  39203  e021  39207  e012  39209  e102  39211  e110  39218  e101  39220  e011  39222  e100  39224  e010  39226  e001  39228  e01  39233  e10  39236  sspwimpVD  39469
  Copyright terms: Public domain W3C validator