Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  vdn0conngrumgrv2 Structured version   Visualization version   GIF version

Theorem vdn0conngrumgrv2 41361
Description: A vertex in a connected multigraph with more than one vertex cannot have degree 0. Formerly vdgn0frgrav2 26313. (Contributed by Alexander van der Vekens, 9-Dec-2017.) (Revised by AV, 4-Apr-2021.)
Hypothesis
Ref Expression
vdn0conngrv2.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
vdn0conngrumgrv2 (((𝐺 ∈ ConnGraph ∧ 𝐺 ∈ UMGraph ) ∧ (𝑁𝑉 ∧ 1 < (#‘𝑉))) → ((VtxDeg‘𝐺)‘𝑁) ≠ 0)

Proof of Theorem vdn0conngrumgrv2
Dummy variables 𝑒 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vdn0conngrv2.v . . . 4 𝑉 = (Vtx‘𝐺)
2 eqid 2605 . . . 4 (iEdg‘𝐺) = (iEdg‘𝐺)
3 eqid 2605 . . . 4 dom (iEdg‘𝐺) = dom (iEdg‘𝐺)
4 eqid 2605 . . . 4 (VtxDeg‘𝐺) = (VtxDeg‘𝐺)
51, 2, 3, 4vtxdumgrval 40699 . . 3 ((𝐺 ∈ UMGraph ∧ 𝑁𝑉) → ((VtxDeg‘𝐺)‘𝑁) = (#‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑁 ∈ ((iEdg‘𝐺)‘𝑥)}))
65ad2ant2lr 779 . 2 (((𝐺 ∈ ConnGraph ∧ 𝐺 ∈ UMGraph ) ∧ (𝑁𝑉 ∧ 1 < (#‘𝑉))) → ((VtxDeg‘𝐺)‘𝑁) = (#‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑁 ∈ ((iEdg‘𝐺)‘𝑥)}))
7 umgruhgr 40327 . . . . . . . 8 (𝐺 ∈ UMGraph → 𝐺 ∈ UHGraph )
82uhgrfun 40286 . . . . . . . 8 (𝐺 ∈ UHGraph → Fun (iEdg‘𝐺))
9 funfn 5815 . . . . . . . . 9 (Fun (iEdg‘𝐺) ↔ (iEdg‘𝐺) Fn dom (iEdg‘𝐺))
109biimpi 204 . . . . . . . 8 (Fun (iEdg‘𝐺) → (iEdg‘𝐺) Fn dom (iEdg‘𝐺))
117, 8, 103syl 18 . . . . . . 7 (𝐺 ∈ UMGraph → (iEdg‘𝐺) Fn dom (iEdg‘𝐺))
1211adantl 480 . . . . . 6 ((𝐺 ∈ ConnGraph ∧ 𝐺 ∈ UMGraph ) → (iEdg‘𝐺) Fn dom (iEdg‘𝐺))
1312adantr 479 . . . . 5 (((𝐺 ∈ ConnGraph ∧ 𝐺 ∈ UMGraph ) ∧ (𝑁𝑉 ∧ 1 < (#‘𝑉))) → (iEdg‘𝐺) Fn dom (iEdg‘𝐺))
14 simpl 471 . . . . . . 7 ((𝐺 ∈ ConnGraph ∧ 𝐺 ∈ UMGraph ) → 𝐺 ∈ ConnGraph)
1514adantr 479 . . . . . 6 (((𝐺 ∈ ConnGraph ∧ 𝐺 ∈ UMGraph ) ∧ (𝑁𝑉 ∧ 1 < (#‘𝑉))) → 𝐺 ∈ ConnGraph)
16 simpl 471 . . . . . . 7 ((𝑁𝑉 ∧ 1 < (#‘𝑉)) → 𝑁𝑉)
1716adantl 480 . . . . . 6 (((𝐺 ∈ ConnGraph ∧ 𝐺 ∈ UMGraph ) ∧ (𝑁𝑉 ∧ 1 < (#‘𝑉))) → 𝑁𝑉)
18 simprr 791 . . . . . 6 (((𝐺 ∈ ConnGraph ∧ 𝐺 ∈ UMGraph ) ∧ (𝑁𝑉 ∧ 1 < (#‘𝑉))) → 1 < (#‘𝑉))
191, 2conngrv2edg 41360 . . . . . 6 ((𝐺 ∈ ConnGraph ∧ 𝑁𝑉 ∧ 1 < (#‘𝑉)) → ∃𝑒 ∈ ran (iEdg‘𝐺)𝑁𝑒)
2015, 17, 18, 19syl3anc 1317 . . . . 5 (((𝐺 ∈ ConnGraph ∧ 𝐺 ∈ UMGraph ) ∧ (𝑁𝑉 ∧ 1 < (#‘𝑉))) → ∃𝑒 ∈ ran (iEdg‘𝐺)𝑁𝑒)
21 eleq2 2672 . . . . . . 7 (𝑒 = ((iEdg‘𝐺)‘𝑥) → (𝑁𝑒𝑁 ∈ ((iEdg‘𝐺)‘𝑥)))
2221rexrn 6250 . . . . . 6 ((iEdg‘𝐺) Fn dom (iEdg‘𝐺) → (∃𝑒 ∈ ran (iEdg‘𝐺)𝑁𝑒 ↔ ∃𝑥 ∈ dom (iEdg‘𝐺)𝑁 ∈ ((iEdg‘𝐺)‘𝑥)))
2322biimpd 217 . . . . 5 ((iEdg‘𝐺) Fn dom (iEdg‘𝐺) → (∃𝑒 ∈ ran (iEdg‘𝐺)𝑁𝑒 → ∃𝑥 ∈ dom (iEdg‘𝐺)𝑁 ∈ ((iEdg‘𝐺)‘𝑥)))
2413, 20, 23sylc 62 . . . 4 (((𝐺 ∈ ConnGraph ∧ 𝐺 ∈ UMGraph ) ∧ (𝑁𝑉 ∧ 1 < (#‘𝑉))) → ∃𝑥 ∈ dom (iEdg‘𝐺)𝑁 ∈ ((iEdg‘𝐺)‘𝑥))
25 dfrex2 2974 . . . 4 (∃𝑥 ∈ dom (iEdg‘𝐺)𝑁 ∈ ((iEdg‘𝐺)‘𝑥) ↔ ¬ ∀𝑥 ∈ dom (iEdg‘𝐺) ¬ 𝑁 ∈ ((iEdg‘𝐺)‘𝑥))
2624, 25sylib 206 . . 3 (((𝐺 ∈ ConnGraph ∧ 𝐺 ∈ UMGraph ) ∧ (𝑁𝑉 ∧ 1 < (#‘𝑉))) → ¬ ∀𝑥 ∈ dom (iEdg‘𝐺) ¬ 𝑁 ∈ ((iEdg‘𝐺)‘𝑥))
27 fvex 6094 . . . . . . . 8 (iEdg‘𝐺) ∈ V
2827dmex 6964 . . . . . . 7 dom (iEdg‘𝐺) ∈ V
2928a1i 11 . . . . . 6 (((𝐺 ∈ ConnGraph ∧ 𝐺 ∈ UMGraph ) ∧ (𝑁𝑉 ∧ 1 < (#‘𝑉))) → dom (iEdg‘𝐺) ∈ V)
30 rabexg 4730 . . . . . 6 (dom (iEdg‘𝐺) ∈ V → {𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑁 ∈ ((iEdg‘𝐺)‘𝑥)} ∈ V)
31 hasheq0 12963 . . . . . 6 ({𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑁 ∈ ((iEdg‘𝐺)‘𝑥)} ∈ V → ((#‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑁 ∈ ((iEdg‘𝐺)‘𝑥)}) = 0 ↔ {𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑁 ∈ ((iEdg‘𝐺)‘𝑥)} = ∅))
3229, 30, 313syl 18 . . . . 5 (((𝐺 ∈ ConnGraph ∧ 𝐺 ∈ UMGraph ) ∧ (𝑁𝑉 ∧ 1 < (#‘𝑉))) → ((#‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑁 ∈ ((iEdg‘𝐺)‘𝑥)}) = 0 ↔ {𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑁 ∈ ((iEdg‘𝐺)‘𝑥)} = ∅))
33 rabeq0 3906 . . . . 5 ({𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑁 ∈ ((iEdg‘𝐺)‘𝑥)} = ∅ ↔ ∀𝑥 ∈ dom (iEdg‘𝐺) ¬ 𝑁 ∈ ((iEdg‘𝐺)‘𝑥))
3432, 33syl6bb 274 . . . 4 (((𝐺 ∈ ConnGraph ∧ 𝐺 ∈ UMGraph ) ∧ (𝑁𝑉 ∧ 1 < (#‘𝑉))) → ((#‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑁 ∈ ((iEdg‘𝐺)‘𝑥)}) = 0 ↔ ∀𝑥 ∈ dom (iEdg‘𝐺) ¬ 𝑁 ∈ ((iEdg‘𝐺)‘𝑥)))
3534necon3abid 2813 . . 3 (((𝐺 ∈ ConnGraph ∧ 𝐺 ∈ UMGraph ) ∧ (𝑁𝑉 ∧ 1 < (#‘𝑉))) → ((#‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑁 ∈ ((iEdg‘𝐺)‘𝑥)}) ≠ 0 ↔ ¬ ∀𝑥 ∈ dom (iEdg‘𝐺) ¬ 𝑁 ∈ ((iEdg‘𝐺)‘𝑥)))
3626, 35mpbird 245 . 2 (((𝐺 ∈ ConnGraph ∧ 𝐺 ∈ UMGraph ) ∧ (𝑁𝑉 ∧ 1 < (#‘𝑉))) → (#‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑁 ∈ ((iEdg‘𝐺)‘𝑥)}) ≠ 0)
376, 36eqnetrd 2844 1 (((𝐺 ∈ ConnGraph ∧ 𝐺 ∈ UMGraph ) ∧ (𝑁𝑉 ∧ 1 < (#‘𝑉))) → ((VtxDeg‘𝐺)‘𝑁) ≠ 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 194  wa 382   = wceq 1474  wcel 1975  wne 2775  wral 2891  wrex 2892  {crab 2895  Vcvv 3168  c0 3869   class class class wbr 4573  dom cdm 5024  ran crn 5025  Fun wfun 5780   Fn wfn 5781  cfv 5786  0cc0 9788  1c1 9789   < clt 9926  #chash 12930  Vtxcvtx 40227  iEdgciedg 40228   UHGraph cuhgr 40276   UMGraph cumgr 40305  VtxDegcvtxdg 40679  ConnGraphcconngr 41351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1711  ax-4 1726  ax-5 1825  ax-6 1873  ax-7 1920  ax-8 1977  ax-9 1984  ax-10 2004  ax-11 2019  ax-12 2031  ax-13 2228  ax-ext 2585  ax-rep 4689  ax-sep 4699  ax-nul 4708  ax-pow 4760  ax-pr 4824  ax-un 6820  ax-cnex 9844  ax-resscn 9845  ax-1cn 9846  ax-icn 9847  ax-addcl 9848  ax-addrcl 9849  ax-mulcl 9850  ax-mulrcl 9851  ax-mulcom 9852  ax-addass 9853  ax-mulass 9854  ax-distr 9855  ax-i2m1 9856  ax-1ne0 9857  ax-1rid 9858  ax-rnegex 9859  ax-rrecex 9860  ax-cnre 9861  ax-pre-lttri 9862  ax-pre-lttrn 9863  ax-pre-ltadd 9864  ax-pre-mulgt0 9865
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-ifp 1006  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1866  df-eu 2457  df-mo 2458  df-clab 2592  df-cleq 2598  df-clel 2601  df-nfc 2735  df-ne 2777  df-nel 2778  df-ral 2896  df-rex 2897  df-reu 2898  df-rab 2900  df-v 3170  df-sbc 3398  df-csb 3495  df-dif 3538  df-un 3540  df-in 3542  df-ss 3549  df-pss 3551  df-nul 3870  df-if 4032  df-pw 4105  df-sn 4121  df-pr 4123  df-tp 4125  df-op 4127  df-uni 4363  df-int 4401  df-iun 4447  df-br 4574  df-opab 4634  df-mpt 4635  df-tr 4671  df-eprel 4935  df-id 4939  df-po 4945  df-so 4946  df-fr 4983  df-we 4985  df-xp 5030  df-rel 5031  df-cnv 5032  df-co 5033  df-dm 5034  df-rn 5035  df-res 5036  df-ima 5037  df-pred 5579  df-ord 5625  df-on 5626  df-lim 5627  df-suc 5628  df-iota 5750  df-fun 5788  df-fn 5789  df-f 5790  df-f1 5791  df-fo 5792  df-f1o 5793  df-fv 5794  df-riota 6485  df-ov 6526  df-oprab 6527  df-mpt2 6528  df-om 6931  df-1st 7032  df-2nd 7033  df-wrecs 7267  df-recs 7328  df-rdg 7366  df-1o 7420  df-oadd 7424  df-er 7602  df-map 7719  df-pm 7720  df-en 7815  df-dom 7816  df-sdom 7817  df-fin 7818  df-card 8621  df-pnf 9928  df-mnf 9929  df-xr 9930  df-ltxr 9931  df-le 9932  df-sub 10115  df-neg 10116  df-nn 10864  df-2 10922  df-n0 11136  df-z 11207  df-uz 11516  df-xadd 11775  df-fz 12149  df-fzo 12286  df-hash 12931  df-word 13096  df-xnn0 40196  df-uhgr 40278  df-upgr 40306  df-umgr 40307  df-vtxdg 40680  df-1wlks 40798  df-wlkson 40800  df-trls 40899  df-trlson 40900  df-pths 40921  df-pthson 40923  df-conngr 41352
This theorem is referenced by:  vdgn0frgrv2  41463
  Copyright terms: Public domain W3C validator