MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vdwapf Structured version   Visualization version   GIF version

Theorem vdwapf 16310
Description: The arithmetic progression function is a function. (Contributed by Mario Carneiro, 18-Aug-2014.)
Assertion
Ref Expression
vdwapf (𝐾 ∈ ℕ0 → (AP‘𝐾):(ℕ × ℕ)⟶𝒫 ℕ)

Proof of Theorem vdwapf
Dummy variables 𝑎 𝑑 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 765 . . . . . . . 8 (((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝑎 ∈ ℕ)
2 elfznn0 13003 . . . . . . . . . 10 (𝑚 ∈ (0...(𝐾 − 1)) → 𝑚 ∈ ℕ0)
32adantl 484 . . . . . . . . 9 (((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝑚 ∈ ℕ0)
4 nnnn0 11907 . . . . . . . . . 10 (𝑑 ∈ ℕ → 𝑑 ∈ ℕ0)
54ad2antlr 725 . . . . . . . . 9 (((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝑑 ∈ ℕ0)
63, 5nn0mulcld 11963 . . . . . . . 8 (((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝑚 · 𝑑) ∈ ℕ0)
7 nnnn0addcl 11930 . . . . . . . 8 ((𝑎 ∈ ℕ ∧ (𝑚 · 𝑑) ∈ ℕ0) → (𝑎 + (𝑚 · 𝑑)) ∈ ℕ)
81, 6, 7syl2anc 586 . . . . . . 7 (((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝑎 + (𝑚 · 𝑑)) ∈ ℕ)
98fmpttd 6881 . . . . . 6 ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) → (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝑎 + (𝑚 · 𝑑))):(0...(𝐾 − 1))⟶ℕ)
109frnd 6523 . . . . 5 ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) → ran (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝑎 + (𝑚 · 𝑑))) ⊆ ℕ)
11 nnex 11646 . . . . . 6 ℕ ∈ V
1211elpw2 5250 . . . . 5 (ran (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝑎 + (𝑚 · 𝑑))) ∈ 𝒫 ℕ ↔ ran (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝑎 + (𝑚 · 𝑑))) ⊆ ℕ)
1310, 12sylibr 236 . . . 4 ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) → ran (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝑎 + (𝑚 · 𝑑))) ∈ 𝒫 ℕ)
1413rgen2 3205 . . 3 𝑎 ∈ ℕ ∀𝑑 ∈ ℕ ran (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝑎 + (𝑚 · 𝑑))) ∈ 𝒫 ℕ
15 eqid 2823 . . . 4 (𝑎 ∈ ℕ, 𝑑 ∈ ℕ ↦ ran (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝑎 + (𝑚 · 𝑑)))) = (𝑎 ∈ ℕ, 𝑑 ∈ ℕ ↦ ran (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝑎 + (𝑚 · 𝑑))))
1615fmpo 7768 . . 3 (∀𝑎 ∈ ℕ ∀𝑑 ∈ ℕ ran (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝑎 + (𝑚 · 𝑑))) ∈ 𝒫 ℕ ↔ (𝑎 ∈ ℕ, 𝑑 ∈ ℕ ↦ ran (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝑎 + (𝑚 · 𝑑)))):(ℕ × ℕ)⟶𝒫 ℕ)
1714, 16mpbi 232 . 2 (𝑎 ∈ ℕ, 𝑑 ∈ ℕ ↦ ran (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝑎 + (𝑚 · 𝑑)))):(ℕ × ℕ)⟶𝒫 ℕ
18 vdwapfval 16309 . . 3 (𝐾 ∈ ℕ0 → (AP‘𝐾) = (𝑎 ∈ ℕ, 𝑑 ∈ ℕ ↦ ran (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝑎 + (𝑚 · 𝑑)))))
1918feq1d 6501 . 2 (𝐾 ∈ ℕ0 → ((AP‘𝐾):(ℕ × ℕ)⟶𝒫 ℕ ↔ (𝑎 ∈ ℕ, 𝑑 ∈ ℕ ↦ ran (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝑎 + (𝑚 · 𝑑)))):(ℕ × ℕ)⟶𝒫 ℕ))
2017, 19mpbiri 260 1 (𝐾 ∈ ℕ0 → (AP‘𝐾):(ℕ × ℕ)⟶𝒫 ℕ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  wcel 2114  wral 3140  wss 3938  𝒫 cpw 4541  cmpt 5148   × cxp 5555  ran crn 5558  wf 6353  cfv 6357  (class class class)co 7158  cmpo 7160  0cc0 10539  1c1 10540   + caddc 10542   · cmul 10544  cmin 10872  cn 11640  0cn0 11900  ...cfz 12895  APcvdwa 16303
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-n0 11901  df-z 11985  df-uz 12247  df-fz 12896  df-vdwap 16306
This theorem is referenced by:  vdwmc  16316
  Copyright terms: Public domain W3C validator