Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  vdwapun Structured version   Visualization version   GIF version

Theorem vdwapun 15900
 Description: Remove the first element of an arithmetic progression. (Contributed by Mario Carneiro, 11-Sep-2014.)
Assertion
Ref Expression
vdwapun ((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (𝐴(AP‘(𝐾 + 1))𝐷) = ({𝐴} ∪ ((𝐴 + 𝐷)(AP‘𝐾)𝐷)))

Proof of Theorem vdwapun
Dummy variables 𝑚 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 peano2nn0 11545 . . . . 5 (𝐾 ∈ ℕ0 → (𝐾 + 1) ∈ ℕ0)
2 vdwapval 15899 . . . . 5 (((𝐾 + 1) ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (𝑥 ∈ (𝐴(AP‘(𝐾 + 1))𝐷) ↔ ∃𝑛 ∈ (0...((𝐾 + 1) − 1))𝑥 = (𝐴 + (𝑛 · 𝐷))))
31, 2syl3an1 1167 . . . 4 ((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (𝑥 ∈ (𝐴(AP‘(𝐾 + 1))𝐷) ↔ ∃𝑛 ∈ (0...((𝐾 + 1) − 1))𝑥 = (𝐴 + (𝑛 · 𝐷))))
4 simp1 1131 . . . . . . . . . . . . 13 ((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → 𝐾 ∈ ℕ0)
54nn0cnd 11565 . . . . . . . . . . . 12 ((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → 𝐾 ∈ ℂ)
6 ax-1cn 10206 . . . . . . . . . . . 12 1 ∈ ℂ
7 pncan 10499 . . . . . . . . . . . 12 ((𝐾 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐾 + 1) − 1) = 𝐾)
85, 6, 7sylancl 697 . . . . . . . . . . 11 ((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → ((𝐾 + 1) − 1) = 𝐾)
98oveq2d 6830 . . . . . . . . . 10 ((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (0...((𝐾 + 1) − 1)) = (0...𝐾))
109eleq2d 2825 . . . . . . . . 9 ((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (𝑛 ∈ (0...((𝐾 + 1) − 1)) ↔ 𝑛 ∈ (0...𝐾)))
11 nn0uz 11935 . . . . . . . . . . 11 0 = (ℤ‘0)
124, 11syl6eleq 2849 . . . . . . . . . 10 ((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → 𝐾 ∈ (ℤ‘0))
13 elfzp12 12632 . . . . . . . . . 10 (𝐾 ∈ (ℤ‘0) → (𝑛 ∈ (0...𝐾) ↔ (𝑛 = 0 ∨ 𝑛 ∈ ((0 + 1)...𝐾))))
1412, 13syl 17 . . . . . . . . 9 ((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (𝑛 ∈ (0...𝐾) ↔ (𝑛 = 0 ∨ 𝑛 ∈ ((0 + 1)...𝐾))))
1510, 14bitrd 268 . . . . . . . 8 ((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (𝑛 ∈ (0...((𝐾 + 1) − 1)) ↔ (𝑛 = 0 ∨ 𝑛 ∈ ((0 + 1)...𝐾))))
1615anbi1d 743 . . . . . . 7 ((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → ((𝑛 ∈ (0...((𝐾 + 1) − 1)) ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))) ↔ ((𝑛 = 0 ∨ 𝑛 ∈ ((0 + 1)...𝐾)) ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷)))))
17 andir 948 . . . . . . 7 (((𝑛 = 0 ∨ 𝑛 ∈ ((0 + 1)...𝐾)) ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))) ↔ ((𝑛 = 0 ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))) ∨ (𝑛 ∈ ((0 + 1)...𝐾) ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷)))))
1816, 17syl6bb 276 . . . . . 6 ((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → ((𝑛 ∈ (0...((𝐾 + 1) − 1)) ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))) ↔ ((𝑛 = 0 ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))) ∨ (𝑛 ∈ ((0 + 1)...𝐾) ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))))))
1918exbidv 1999 . . . . 5 ((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (∃𝑛(𝑛 ∈ (0...((𝐾 + 1) − 1)) ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))) ↔ ∃𝑛((𝑛 = 0 ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))) ∨ (𝑛 ∈ ((0 + 1)...𝐾) ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))))))
20 df-rex 3056 . . . . 5 (∃𝑛 ∈ (0...((𝐾 + 1) − 1))𝑥 = (𝐴 + (𝑛 · 𝐷)) ↔ ∃𝑛(𝑛 ∈ (0...((𝐾 + 1) − 1)) ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))))
21 19.43 1959 . . . . . 6 (∃𝑛((𝑛 = 0 ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))) ∨ (𝑛 ∈ ((0 + 1)...𝐾) ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷)))) ↔ (∃𝑛(𝑛 = 0 ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))) ∨ ∃𝑛(𝑛 ∈ ((0 + 1)...𝐾) ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷)))))
2221bicomi 214 . . . . 5 ((∃𝑛(𝑛 = 0 ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))) ∨ ∃𝑛(𝑛 ∈ ((0 + 1)...𝐾) ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷)))) ↔ ∃𝑛((𝑛 = 0 ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))) ∨ (𝑛 ∈ ((0 + 1)...𝐾) ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷)))))
2319, 20, 223bitr4g 303 . . . 4 ((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (∃𝑛 ∈ (0...((𝐾 + 1) − 1))𝑥 = (𝐴 + (𝑛 · 𝐷)) ↔ (∃𝑛(𝑛 = 0 ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))) ∨ ∃𝑛(𝑛 ∈ ((0 + 1)...𝐾) ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))))))
243, 23bitrd 268 . . 3 ((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (𝑥 ∈ (𝐴(AP‘(𝐾 + 1))𝐷) ↔ (∃𝑛(𝑛 = 0 ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))) ∨ ∃𝑛(𝑛 ∈ ((0 + 1)...𝐾) ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))))))
25 nncn 11240 . . . . . . . . . . 11 (𝐷 ∈ ℕ → 𝐷 ∈ ℂ)
26253ad2ant3 1130 . . . . . . . . . 10 ((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → 𝐷 ∈ ℂ)
2726mul02d 10446 . . . . . . . . 9 ((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (0 · 𝐷) = 0)
2827oveq2d 6830 . . . . . . . 8 ((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (𝐴 + (0 · 𝐷)) = (𝐴 + 0))
29 nncn 11240 . . . . . . . . . 10 (𝐴 ∈ ℕ → 𝐴 ∈ ℂ)
30293ad2ant2 1129 . . . . . . . . 9 ((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → 𝐴 ∈ ℂ)
3130addid1d 10448 . . . . . . . 8 ((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (𝐴 + 0) = 𝐴)
3228, 31eqtrd 2794 . . . . . . 7 ((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (𝐴 + (0 · 𝐷)) = 𝐴)
3332eqeq2d 2770 . . . . . 6 ((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (𝑥 = (𝐴 + (0 · 𝐷)) ↔ 𝑥 = 𝐴))
34 c0ex 10246 . . . . . . 7 0 ∈ V
35 oveq1 6821 . . . . . . . . 9 (𝑛 = 0 → (𝑛 · 𝐷) = (0 · 𝐷))
3635oveq2d 6830 . . . . . . . 8 (𝑛 = 0 → (𝐴 + (𝑛 · 𝐷)) = (𝐴 + (0 · 𝐷)))
3736eqeq2d 2770 . . . . . . 7 (𝑛 = 0 → (𝑥 = (𝐴 + (𝑛 · 𝐷)) ↔ 𝑥 = (𝐴 + (0 · 𝐷))))
3834, 37ceqsexv 3382 . . . . . 6 (∃𝑛(𝑛 = 0 ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))) ↔ 𝑥 = (𝐴 + (0 · 𝐷)))
39 velsn 4337 . . . . . 6 (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴)
4033, 38, 393bitr4g 303 . . . . 5 ((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (∃𝑛(𝑛 = 0 ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))) ↔ 𝑥 ∈ {𝐴}))
41 simpr 479 . . . . . . . . . . . . . 14 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑛 ∈ ((0 + 1)...𝐾)) → 𝑛 ∈ ((0 + 1)...𝐾))
42 0p1e1 11344 . . . . . . . . . . . . . . 15 (0 + 1) = 1
4342oveq1i 6824 . . . . . . . . . . . . . 14 ((0 + 1)...𝐾) = (1...𝐾)
4441, 43syl6eleq 2849 . . . . . . . . . . . . 13 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑛 ∈ ((0 + 1)...𝐾)) → 𝑛 ∈ (1...𝐾))
45 1zzd 11620 . . . . . . . . . . . . . 14 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑛 ∈ ((0 + 1)...𝐾)) → 1 ∈ ℤ)
464adantr 472 . . . . . . . . . . . . . . 15 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑛 ∈ ((0 + 1)...𝐾)) → 𝐾 ∈ ℕ0)
4746nn0zd 11692 . . . . . . . . . . . . . 14 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑛 ∈ ((0 + 1)...𝐾)) → 𝐾 ∈ ℤ)
48 elfzelz 12555 . . . . . . . . . . . . . . 15 (𝑛 ∈ ((0 + 1)...𝐾) → 𝑛 ∈ ℤ)
4948adantl 473 . . . . . . . . . . . . . 14 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑛 ∈ ((0 + 1)...𝐾)) → 𝑛 ∈ ℤ)
50 fzsubel 12590 . . . . . . . . . . . . . 14 (((1 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑛 ∈ ℤ ∧ 1 ∈ ℤ)) → (𝑛 ∈ (1...𝐾) ↔ (𝑛 − 1) ∈ ((1 − 1)...(𝐾 − 1))))
5145, 47, 49, 45, 50syl22anc 1478 . . . . . . . . . . . . 13 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑛 ∈ ((0 + 1)...𝐾)) → (𝑛 ∈ (1...𝐾) ↔ (𝑛 − 1) ∈ ((1 − 1)...(𝐾 − 1))))
5244, 51mpbid 222 . . . . . . . . . . . 12 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑛 ∈ ((0 + 1)...𝐾)) → (𝑛 − 1) ∈ ((1 − 1)...(𝐾 − 1)))
53 1m1e0 11301 . . . . . . . . . . . . 13 (1 − 1) = 0
5453oveq1i 6824 . . . . . . . . . . . 12 ((1 − 1)...(𝐾 − 1)) = (0...(𝐾 − 1))
5552, 54syl6eleq 2849 . . . . . . . . . . 11 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑛 ∈ ((0 + 1)...𝐾)) → (𝑛 − 1) ∈ (0...(𝐾 − 1)))
5649zcnd 11695 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑛 ∈ ((0 + 1)...𝐾)) → 𝑛 ∈ ℂ)
57 1cnd 10268 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑛 ∈ ((0 + 1)...𝐾)) → 1 ∈ ℂ)
5826adantr 472 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑛 ∈ ((0 + 1)...𝐾)) → 𝐷 ∈ ℂ)
5956, 57, 58subdird 10699 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑛 ∈ ((0 + 1)...𝐾)) → ((𝑛 − 1) · 𝐷) = ((𝑛 · 𝐷) − (1 · 𝐷)))
6058mulid2d 10270 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑛 ∈ ((0 + 1)...𝐾)) → (1 · 𝐷) = 𝐷)
6160oveq2d 6830 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑛 ∈ ((0 + 1)...𝐾)) → ((𝑛 · 𝐷) − (1 · 𝐷)) = ((𝑛 · 𝐷) − 𝐷))
6259, 61eqtrd 2794 . . . . . . . . . . . . . . 15 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑛 ∈ ((0 + 1)...𝐾)) → ((𝑛 − 1) · 𝐷) = ((𝑛 · 𝐷) − 𝐷))
6362oveq2d 6830 . . . . . . . . . . . . . 14 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑛 ∈ ((0 + 1)...𝐾)) → (𝐷 + ((𝑛 − 1) · 𝐷)) = (𝐷 + ((𝑛 · 𝐷) − 𝐷)))
6456, 58mulcld 10272 . . . . . . . . . . . . . . 15 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑛 ∈ ((0 + 1)...𝐾)) → (𝑛 · 𝐷) ∈ ℂ)
6558, 64pncan3d 10607 . . . . . . . . . . . . . 14 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑛 ∈ ((0 + 1)...𝐾)) → (𝐷 + ((𝑛 · 𝐷) − 𝐷)) = (𝑛 · 𝐷))
6663, 65eqtr2d 2795 . . . . . . . . . . . . 13 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑛 ∈ ((0 + 1)...𝐾)) → (𝑛 · 𝐷) = (𝐷 + ((𝑛 − 1) · 𝐷)))
6766oveq2d 6830 . . . . . . . . . . . 12 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑛 ∈ ((0 + 1)...𝐾)) → (𝐴 + (𝑛 · 𝐷)) = (𝐴 + (𝐷 + ((𝑛 − 1) · 𝐷))))
6830adantr 472 . . . . . . . . . . . . 13 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑛 ∈ ((0 + 1)...𝐾)) → 𝐴 ∈ ℂ)
69 subcl 10492 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑛 − 1) ∈ ℂ)
7056, 6, 69sylancl 697 . . . . . . . . . . . . . 14 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑛 ∈ ((0 + 1)...𝐾)) → (𝑛 − 1) ∈ ℂ)
7170, 58mulcld 10272 . . . . . . . . . . . . 13 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑛 ∈ ((0 + 1)...𝐾)) → ((𝑛 − 1) · 𝐷) ∈ ℂ)
7268, 58, 71addassd 10274 . . . . . . . . . . . 12 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑛 ∈ ((0 + 1)...𝐾)) → ((𝐴 + 𝐷) + ((𝑛 − 1) · 𝐷)) = (𝐴 + (𝐷 + ((𝑛 − 1) · 𝐷))))
7367, 72eqtr4d 2797 . . . . . . . . . . 11 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑛 ∈ ((0 + 1)...𝐾)) → (𝐴 + (𝑛 · 𝐷)) = ((𝐴 + 𝐷) + ((𝑛 − 1) · 𝐷)))
74 oveq1 6821 . . . . . . . . . . . . . 14 (𝑚 = (𝑛 − 1) → (𝑚 · 𝐷) = ((𝑛 − 1) · 𝐷))
7574oveq2d 6830 . . . . . . . . . . . . 13 (𝑚 = (𝑛 − 1) → ((𝐴 + 𝐷) + (𝑚 · 𝐷)) = ((𝐴 + 𝐷) + ((𝑛 − 1) · 𝐷)))
7675eqeq2d 2770 . . . . . . . . . . . 12 (𝑚 = (𝑛 − 1) → ((𝐴 + (𝑛 · 𝐷)) = ((𝐴 + 𝐷) + (𝑚 · 𝐷)) ↔ (𝐴 + (𝑛 · 𝐷)) = ((𝐴 + 𝐷) + ((𝑛 − 1) · 𝐷))))
7776rspcev 3449 . . . . . . . . . . 11 (((𝑛 − 1) ∈ (0...(𝐾 − 1)) ∧ (𝐴 + (𝑛 · 𝐷)) = ((𝐴 + 𝐷) + ((𝑛 − 1) · 𝐷))) → ∃𝑚 ∈ (0...(𝐾 − 1))(𝐴 + (𝑛 · 𝐷)) = ((𝐴 + 𝐷) + (𝑚 · 𝐷)))
7855, 73, 77syl2anc 696 . . . . . . . . . 10 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑛 ∈ ((0 + 1)...𝐾)) → ∃𝑚 ∈ (0...(𝐾 − 1))(𝐴 + (𝑛 · 𝐷)) = ((𝐴 + 𝐷) + (𝑚 · 𝐷)))
79 eqeq1 2764 . . . . . . . . . . 11 (𝑥 = (𝐴 + (𝑛 · 𝐷)) → (𝑥 = ((𝐴 + 𝐷) + (𝑚 · 𝐷)) ↔ (𝐴 + (𝑛 · 𝐷)) = ((𝐴 + 𝐷) + (𝑚 · 𝐷))))
8079rexbidv 3190 . . . . . . . . . 10 (𝑥 = (𝐴 + (𝑛 · 𝐷)) → (∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = ((𝐴 + 𝐷) + (𝑚 · 𝐷)) ↔ ∃𝑚 ∈ (0...(𝐾 − 1))(𝐴 + (𝑛 · 𝐷)) = ((𝐴 + 𝐷) + (𝑚 · 𝐷))))
8178, 80syl5ibrcom 237 . . . . . . . . 9 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑛 ∈ ((0 + 1)...𝐾)) → (𝑥 = (𝐴 + (𝑛 · 𝐷)) → ∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = ((𝐴 + 𝐷) + (𝑚 · 𝐷))))
8281expimpd 630 . . . . . . . 8 ((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → ((𝑛 ∈ ((0 + 1)...𝐾) ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))) → ∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = ((𝐴 + 𝐷) + (𝑚 · 𝐷))))
8382exlimdv 2010 . . . . . . 7 ((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (∃𝑛(𝑛 ∈ ((0 + 1)...𝐾) ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))) → ∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = ((𝐴 + 𝐷) + (𝑚 · 𝐷))))
84 simpr 479 . . . . . . . . . . . 12 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝑚 ∈ (0...(𝐾 − 1)))
85 0zd 11601 . . . . . . . . . . . . 13 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → 0 ∈ ℤ)
864adantr 472 . . . . . . . . . . . . . . 15 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝐾 ∈ ℕ0)
8786nn0zd 11692 . . . . . . . . . . . . . 14 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝐾 ∈ ℤ)
88 peano2zm 11632 . . . . . . . . . . . . . 14 (𝐾 ∈ ℤ → (𝐾 − 1) ∈ ℤ)
8987, 88syl 17 . . . . . . . . . . . . 13 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝐾 − 1) ∈ ℤ)
90 elfzelz 12555 . . . . . . . . . . . . . 14 (𝑚 ∈ (0...(𝐾 − 1)) → 𝑚 ∈ ℤ)
9190adantl 473 . . . . . . . . . . . . 13 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝑚 ∈ ℤ)
92 1zzd 11620 . . . . . . . . . . . . 13 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → 1 ∈ ℤ)
93 fzaddel 12588 . . . . . . . . . . . . 13 (((0 ∈ ℤ ∧ (𝐾 − 1) ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 1 ∈ ℤ)) → (𝑚 ∈ (0...(𝐾 − 1)) ↔ (𝑚 + 1) ∈ ((0 + 1)...((𝐾 − 1) + 1))))
9485, 89, 91, 92, 93syl22anc 1478 . . . . . . . . . . . 12 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝑚 ∈ (0...(𝐾 − 1)) ↔ (𝑚 + 1) ∈ ((0 + 1)...((𝐾 − 1) + 1))))
9584, 94mpbid 222 . . . . . . . . . . 11 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝑚 + 1) ∈ ((0 + 1)...((𝐾 − 1) + 1)))
9686nn0cnd 11565 . . . . . . . . . . . . 13 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝐾 ∈ ℂ)
97 npcan 10502 . . . . . . . . . . . . 13 ((𝐾 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐾 − 1) + 1) = 𝐾)
9896, 6, 97sylancl 697 . . . . . . . . . . . 12 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → ((𝐾 − 1) + 1) = 𝐾)
9998oveq2d 6830 . . . . . . . . . . 11 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → ((0 + 1)...((𝐾 − 1) + 1)) = ((0 + 1)...𝐾))
10095, 99eleqtrd 2841 . . . . . . . . . 10 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝑚 + 1) ∈ ((0 + 1)...𝐾))
10130adantr 472 . . . . . . . . . . . 12 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝐴 ∈ ℂ)
10226adantr 472 . . . . . . . . . . . 12 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝐷 ∈ ℂ)
10391zcnd 11695 . . . . . . . . . . . . 13 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝑚 ∈ ℂ)
104103, 102mulcld 10272 . . . . . . . . . . . 12 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝑚 · 𝐷) ∈ ℂ)
105101, 102, 104addassd 10274 . . . . . . . . . . 11 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → ((𝐴 + 𝐷) + (𝑚 · 𝐷)) = (𝐴 + (𝐷 + (𝑚 · 𝐷))))
106 1cnd 10268 . . . . . . . . . . . . . 14 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → 1 ∈ ℂ)
107103, 106, 102adddird 10277 . . . . . . . . . . . . 13 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → ((𝑚 + 1) · 𝐷) = ((𝑚 · 𝐷) + (1 · 𝐷)))
108102, 104addcomd 10450 . . . . . . . . . . . . . 14 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝐷 + (𝑚 · 𝐷)) = ((𝑚 · 𝐷) + 𝐷))
109102mulid2d 10270 . . . . . . . . . . . . . . 15 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (1 · 𝐷) = 𝐷)
110109oveq2d 6830 . . . . . . . . . . . . . 14 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → ((𝑚 · 𝐷) + (1 · 𝐷)) = ((𝑚 · 𝐷) + 𝐷))
111108, 110eqtr4d 2797 . . . . . . . . . . . . 13 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝐷 + (𝑚 · 𝐷)) = ((𝑚 · 𝐷) + (1 · 𝐷)))
112107, 111eqtr4d 2797 . . . . . . . . . . . 12 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → ((𝑚 + 1) · 𝐷) = (𝐷 + (𝑚 · 𝐷)))
113112oveq2d 6830 . . . . . . . . . . 11 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝐴 + ((𝑚 + 1) · 𝐷)) = (𝐴 + (𝐷 + (𝑚 · 𝐷))))
114105, 113eqtr4d 2797 . . . . . . . . . 10 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → ((𝐴 + 𝐷) + (𝑚 · 𝐷)) = (𝐴 + ((𝑚 + 1) · 𝐷)))
115 ovex 6842 . . . . . . . . . . 11 (𝑚 + 1) ∈ V
116 eleq1 2827 . . . . . . . . . . . 12 (𝑛 = (𝑚 + 1) → (𝑛 ∈ ((0 + 1)...𝐾) ↔ (𝑚 + 1) ∈ ((0 + 1)...𝐾)))
117 oveq1 6821 . . . . . . . . . . . . . 14 (𝑛 = (𝑚 + 1) → (𝑛 · 𝐷) = ((𝑚 + 1) · 𝐷))
118117oveq2d 6830 . . . . . . . . . . . . 13 (𝑛 = (𝑚 + 1) → (𝐴 + (𝑛 · 𝐷)) = (𝐴 + ((𝑚 + 1) · 𝐷)))
119118eqeq2d 2770 . . . . . . . . . . . 12 (𝑛 = (𝑚 + 1) → (((𝐴 + 𝐷) + (𝑚 · 𝐷)) = (𝐴 + (𝑛 · 𝐷)) ↔ ((𝐴 + 𝐷) + (𝑚 · 𝐷)) = (𝐴 + ((𝑚 + 1) · 𝐷))))
120116, 119anbi12d 749 . . . . . . . . . . 11 (𝑛 = (𝑚 + 1) → ((𝑛 ∈ ((0 + 1)...𝐾) ∧ ((𝐴 + 𝐷) + (𝑚 · 𝐷)) = (𝐴 + (𝑛 · 𝐷))) ↔ ((𝑚 + 1) ∈ ((0 + 1)...𝐾) ∧ ((𝐴 + 𝐷) + (𝑚 · 𝐷)) = (𝐴 + ((𝑚 + 1) · 𝐷)))))
121115, 120spcev 3440 . . . . . . . . . 10 (((𝑚 + 1) ∈ ((0 + 1)...𝐾) ∧ ((𝐴 + 𝐷) + (𝑚 · 𝐷)) = (𝐴 + ((𝑚 + 1) · 𝐷))) → ∃𝑛(𝑛 ∈ ((0 + 1)...𝐾) ∧ ((𝐴 + 𝐷) + (𝑚 · 𝐷)) = (𝐴 + (𝑛 · 𝐷))))
122100, 114, 121syl2anc 696 . . . . . . . . 9 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → ∃𝑛(𝑛 ∈ ((0 + 1)...𝐾) ∧ ((𝐴 + 𝐷) + (𝑚 · 𝐷)) = (𝐴 + (𝑛 · 𝐷))))
123 eqeq1 2764 . . . . . . . . . . 11 (𝑥 = ((𝐴 + 𝐷) + (𝑚 · 𝐷)) → (𝑥 = (𝐴 + (𝑛 · 𝐷)) ↔ ((𝐴 + 𝐷) + (𝑚 · 𝐷)) = (𝐴 + (𝑛 · 𝐷))))
124123anbi2d 742 . . . . . . . . . 10 (𝑥 = ((𝐴 + 𝐷) + (𝑚 · 𝐷)) → ((𝑛 ∈ ((0 + 1)...𝐾) ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))) ↔ (𝑛 ∈ ((0 + 1)...𝐾) ∧ ((𝐴 + 𝐷) + (𝑚 · 𝐷)) = (𝐴 + (𝑛 · 𝐷)))))
125124exbidv 1999 . . . . . . . . 9 (𝑥 = ((𝐴 + 𝐷) + (𝑚 · 𝐷)) → (∃𝑛(𝑛 ∈ ((0 + 1)...𝐾) ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))) ↔ ∃𝑛(𝑛 ∈ ((0 + 1)...𝐾) ∧ ((𝐴 + 𝐷) + (𝑚 · 𝐷)) = (𝐴 + (𝑛 · 𝐷)))))
126122, 125syl5ibrcom 237 . . . . . . . 8 (((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝑥 = ((𝐴 + 𝐷) + (𝑚 · 𝐷)) → ∃𝑛(𝑛 ∈ ((0 + 1)...𝐾) ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷)))))
127126rexlimdva 3169 . . . . . . 7 ((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = ((𝐴 + 𝐷) + (𝑚 · 𝐷)) → ∃𝑛(𝑛 ∈ ((0 + 1)...𝐾) ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷)))))
12883, 127impbid 202 . . . . . 6 ((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (∃𝑛(𝑛 ∈ ((0 + 1)...𝐾) ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))) ↔ ∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = ((𝐴 + 𝐷) + (𝑚 · 𝐷))))
129 nnaddcl 11254 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (𝐴 + 𝐷) ∈ ℕ)
1301293adant1 1125 . . . . . . 7 ((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (𝐴 + 𝐷) ∈ ℕ)
131 vdwapval 15899 . . . . . . 7 ((𝐾 ∈ ℕ0 ∧ (𝐴 + 𝐷) ∈ ℕ ∧ 𝐷 ∈ ℕ) → (𝑥 ∈ ((𝐴 + 𝐷)(AP‘𝐾)𝐷) ↔ ∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = ((𝐴 + 𝐷) + (𝑚 · 𝐷))))
132130, 131syld3an2 1519 . . . . . 6 ((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (𝑥 ∈ ((𝐴 + 𝐷)(AP‘𝐾)𝐷) ↔ ∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = ((𝐴 + 𝐷) + (𝑚 · 𝐷))))
133128, 132bitr4d 271 . . . . 5 ((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (∃𝑛(𝑛 ∈ ((0 + 1)...𝐾) ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))) ↔ 𝑥 ∈ ((𝐴 + 𝐷)(AP‘𝐾)𝐷)))
13440, 133orbi12d 748 . . . 4 ((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → ((∃𝑛(𝑛 = 0 ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))) ∨ ∃𝑛(𝑛 ∈ ((0 + 1)...𝐾) ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷)))) ↔ (𝑥 ∈ {𝐴} ∨ 𝑥 ∈ ((𝐴 + 𝐷)(AP‘𝐾)𝐷))))
135 elun 3896 . . . 4 (𝑥 ∈ ({𝐴} ∪ ((𝐴 + 𝐷)(AP‘𝐾)𝐷)) ↔ (𝑥 ∈ {𝐴} ∨ 𝑥 ∈ ((𝐴 + 𝐷)(AP‘𝐾)𝐷)))
136134, 135syl6bbr 278 . . 3 ((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → ((∃𝑛(𝑛 = 0 ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))) ∨ ∃𝑛(𝑛 ∈ ((0 + 1)...𝐾) ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷)))) ↔ 𝑥 ∈ ({𝐴} ∪ ((𝐴 + 𝐷)(AP‘𝐾)𝐷))))
13724, 136bitrd 268 . 2 ((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (𝑥 ∈ (𝐴(AP‘(𝐾 + 1))𝐷) ↔ 𝑥 ∈ ({𝐴} ∪ ((𝐴 + 𝐷)(AP‘𝐾)𝐷))))
138137eqrdv 2758 1 ((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (𝐴(AP‘(𝐾 + 1))𝐷) = ({𝐴} ∪ ((𝐴 + 𝐷)(AP‘𝐾)𝐷)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∨ wo 382   ∧ wa 383   ∧ w3a 1072   = wceq 1632  ∃wex 1853   ∈ wcel 2139  ∃wrex 3051   ∪ cun 3713  {csn 4321  ‘cfv 6049  (class class class)co 6814  ℂcc 10146  0cc0 10148  1c1 10149   + caddc 10151   · cmul 10153   − cmin 10478  ℕcn 11232  ℕ0cn0 11504  ℤcz 11589  ℤ≥cuz 11899  ...cfz 12539  APcvdwa 15891 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-1st 7334  df-2nd 7335  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-er 7913  df-en 8124  df-dom 8125  df-sdom 8126  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-nn 11233  df-n0 11505  df-z 11590  df-uz 11900  df-fz 12540  df-vdwap 15894 This theorem is referenced by:  vdwapid1  15901  vdwap1  15903  vdwlem1  15907  vdwlem5  15911  vdwlem8  15914  vdwlem12  15918
 Copyright terms: Public domain W3C validator