Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  vdwlem1 Structured version   Visualization version   GIF version

Theorem vdwlem1 15879
 Description: Lemma for vdw 15892. (Contributed by Mario Carneiro, 12-Sep-2014.)
Hypotheses
Ref Expression
vdwlem1.r (𝜑𝑅 ∈ Fin)
vdwlem1.k (𝜑𝐾 ∈ ℕ)
vdwlem1.w (𝜑𝑊 ∈ ℕ)
vdwlem1.f (𝜑𝐹:(1...𝑊)⟶𝑅)
vdwlem1.a (𝜑𝐴 ∈ ℕ)
vdwlem1.m (𝜑𝑀 ∈ ℕ)
vdwlem1.d (𝜑𝐷:(1...𝑀)⟶ℕ)
vdwlem1.s (𝜑 → ∀𝑖 ∈ (1...𝑀)((𝐴 + (𝐷𝑖))(AP‘𝐾)(𝐷𝑖)) ⊆ (𝐹 “ {(𝐹‘(𝐴 + (𝐷𝑖)))}))
vdwlem1.i (𝜑𝐼 ∈ (1...𝑀))
vdwlem1.e (𝜑 → (𝐹𝐴) = (𝐹‘(𝐴 + (𝐷𝐼))))
Assertion
Ref Expression
vdwlem1 (𝜑 → (𝐾 + 1) MonoAP 𝐹)
Distinct variable groups:   𝐴,𝑖   𝐷,𝑖   𝑖,𝐼   𝑖,𝐾   𝑖,𝐹   𝑖,𝑀   𝜑,𝑖   𝑅,𝑖   𝑖,𝑊

Proof of Theorem vdwlem1
Dummy variables 𝑎 𝑐 𝑑 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vdwlem1.a . . . 4 (𝜑𝐴 ∈ ℕ)
2 vdwlem1.d . . . . 5 (𝜑𝐷:(1...𝑀)⟶ℕ)
3 vdwlem1.i . . . . 5 (𝜑𝐼 ∈ (1...𝑀))
42, 3ffvelrnd 6515 . . . 4 (𝜑 → (𝐷𝐼) ∈ ℕ)
5 vdwlem1.k . . . . . . 7 (𝜑𝐾 ∈ ℕ)
65nnnn0d 11535 . . . . . 6 (𝜑𝐾 ∈ ℕ0)
7 vdwapun 15872 . . . . . 6 ((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ (𝐷𝐼) ∈ ℕ) → (𝐴(AP‘(𝐾 + 1))(𝐷𝐼)) = ({𝐴} ∪ ((𝐴 + (𝐷𝐼))(AP‘𝐾)(𝐷𝐼))))
86, 1, 4, 7syl3anc 1473 . . . . 5 (𝜑 → (𝐴(AP‘(𝐾 + 1))(𝐷𝐼)) = ({𝐴} ∪ ((𝐴 + (𝐷𝐼))(AP‘𝐾)(𝐷𝐼))))
91nnred 11219 . . . . . . . . . 10 (𝜑𝐴 ∈ ℝ)
10 vdwlem1.m . . . . . . . . . . . . . . 15 (𝜑𝑀 ∈ ℕ)
11 nnuz 11908 . . . . . . . . . . . . . . 15 ℕ = (ℤ‘1)
1210, 11syl6eleq 2841 . . . . . . . . . . . . . 14 (𝜑𝑀 ∈ (ℤ‘1))
13 eluzfz1 12533 . . . . . . . . . . . . . 14 (𝑀 ∈ (ℤ‘1) → 1 ∈ (1...𝑀))
1412, 13syl 17 . . . . . . . . . . . . 13 (𝜑 → 1 ∈ (1...𝑀))
152, 14ffvelrnd 6515 . . . . . . . . . . . 12 (𝜑 → (𝐷‘1) ∈ ℕ)
161, 15nnaddcld 11251 . . . . . . . . . . 11 (𝜑 → (𝐴 + (𝐷‘1)) ∈ ℕ)
1716nnred 11219 . . . . . . . . . 10 (𝜑 → (𝐴 + (𝐷‘1)) ∈ ℝ)
18 vdwlem1.w . . . . . . . . . . 11 (𝜑𝑊 ∈ ℕ)
1918nnred 11219 . . . . . . . . . 10 (𝜑𝑊 ∈ ℝ)
2015nnrpd 12055 . . . . . . . . . . . 12 (𝜑 → (𝐷‘1) ∈ ℝ+)
219, 20ltaddrpd 12090 . . . . . . . . . . 11 (𝜑𝐴 < (𝐴 + (𝐷‘1)))
229, 17, 21ltled 10369 . . . . . . . . . 10 (𝜑𝐴 ≤ (𝐴 + (𝐷‘1)))
23 vdwlem1.s . . . . . . . . . . . . . . . 16 (𝜑 → ∀𝑖 ∈ (1...𝑀)((𝐴 + (𝐷𝑖))(AP‘𝐾)(𝐷𝑖)) ⊆ (𝐹 “ {(𝐹‘(𝐴 + (𝐷𝑖)))}))
2423r19.21bi 3062 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (1...𝑀)) → ((𝐴 + (𝐷𝑖))(AP‘𝐾)(𝐷𝑖)) ⊆ (𝐹 “ {(𝐹‘(𝐴 + (𝐷𝑖)))}))
25 cnvimass 5635 . . . . . . . . . . . . . . . . 17 (𝐹 “ {(𝐹‘(𝐴 + (𝐷𝑖)))}) ⊆ dom 𝐹
26 vdwlem1.f . . . . . . . . . . . . . . . . . 18 (𝜑𝐹:(1...𝑊)⟶𝑅)
27 fdm 6204 . . . . . . . . . . . . . . . . . 18 (𝐹:(1...𝑊)⟶𝑅 → dom 𝐹 = (1...𝑊))
2826, 27syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → dom 𝐹 = (1...𝑊))
2925, 28syl5sseq 3786 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐹 “ {(𝐹‘(𝐴 + (𝐷𝑖)))}) ⊆ (1...𝑊))
3029adantr 472 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐹 “ {(𝐹‘(𝐴 + (𝐷𝑖)))}) ⊆ (1...𝑊))
3124, 30sstrd 3746 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (1...𝑀)) → ((𝐴 + (𝐷𝑖))(AP‘𝐾)(𝐷𝑖)) ⊆ (1...𝑊))
32 nnm1nn0 11518 . . . . . . . . . . . . . . . . . . . 20 (𝐾 ∈ ℕ → (𝐾 − 1) ∈ ℕ0)
335, 32syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐾 − 1) ∈ ℕ0)
34 nn0uz 11907 . . . . . . . . . . . . . . . . . . 19 0 = (ℤ‘0)
3533, 34syl6eleq 2841 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐾 − 1) ∈ (ℤ‘0))
36 eluzfz1 12533 . . . . . . . . . . . . . . . . . 18 ((𝐾 − 1) ∈ (ℤ‘0) → 0 ∈ (0...(𝐾 − 1)))
3735, 36syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → 0 ∈ (0...(𝐾 − 1)))
3837adantr 472 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (1...𝑀)) → 0 ∈ (0...(𝐾 − 1)))
392ffvelrnda 6514 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐷𝑖) ∈ ℕ)
4039nncnd 11220 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐷𝑖) ∈ ℂ)
4140mul02d 10418 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (1...𝑀)) → (0 · (𝐷𝑖)) = 0)
4241oveq2d 6821 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (1...𝑀)) → ((𝐴 + (𝐷𝑖)) + (0 · (𝐷𝑖))) = ((𝐴 + (𝐷𝑖)) + 0))
431adantr 472 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖 ∈ (1...𝑀)) → 𝐴 ∈ ℕ)
4443, 39nnaddcld 11251 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐴 + (𝐷𝑖)) ∈ ℕ)
4544nncnd 11220 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐴 + (𝐷𝑖)) ∈ ℂ)
4645addid1d 10420 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (1...𝑀)) → ((𝐴 + (𝐷𝑖)) + 0) = (𝐴 + (𝐷𝑖)))
4742, 46eqtr2d 2787 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐴 + (𝐷𝑖)) = ((𝐴 + (𝐷𝑖)) + (0 · (𝐷𝑖))))
48 oveq1 6812 . . . . . . . . . . . . . . . . . . 19 (𝑚 = 0 → (𝑚 · (𝐷𝑖)) = (0 · (𝐷𝑖)))
4948oveq2d 6821 . . . . . . . . . . . . . . . . . 18 (𝑚 = 0 → ((𝐴 + (𝐷𝑖)) + (𝑚 · (𝐷𝑖))) = ((𝐴 + (𝐷𝑖)) + (0 · (𝐷𝑖))))
5049eqeq2d 2762 . . . . . . . . . . . . . . . . 17 (𝑚 = 0 → ((𝐴 + (𝐷𝑖)) = ((𝐴 + (𝐷𝑖)) + (𝑚 · (𝐷𝑖))) ↔ (𝐴 + (𝐷𝑖)) = ((𝐴 + (𝐷𝑖)) + (0 · (𝐷𝑖)))))
5150rspcev 3441 . . . . . . . . . . . . . . . 16 ((0 ∈ (0...(𝐾 − 1)) ∧ (𝐴 + (𝐷𝑖)) = ((𝐴 + (𝐷𝑖)) + (0 · (𝐷𝑖)))) → ∃𝑚 ∈ (0...(𝐾 − 1))(𝐴 + (𝐷𝑖)) = ((𝐴 + (𝐷𝑖)) + (𝑚 · (𝐷𝑖))))
5238, 47, 51syl2anc 696 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (1...𝑀)) → ∃𝑚 ∈ (0...(𝐾 − 1))(𝐴 + (𝐷𝑖)) = ((𝐴 + (𝐷𝑖)) + (𝑚 · (𝐷𝑖))))
535adantr 472 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (1...𝑀)) → 𝐾 ∈ ℕ)
5453nnnn0d 11535 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (1...𝑀)) → 𝐾 ∈ ℕ0)
55 vdwapval 15871 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ ℕ0 ∧ (𝐴 + (𝐷𝑖)) ∈ ℕ ∧ (𝐷𝑖) ∈ ℕ) → ((𝐴 + (𝐷𝑖)) ∈ ((𝐴 + (𝐷𝑖))(AP‘𝐾)(𝐷𝑖)) ↔ ∃𝑚 ∈ (0...(𝐾 − 1))(𝐴 + (𝐷𝑖)) = ((𝐴 + (𝐷𝑖)) + (𝑚 · (𝐷𝑖)))))
5654, 44, 39, 55syl3anc 1473 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (1...𝑀)) → ((𝐴 + (𝐷𝑖)) ∈ ((𝐴 + (𝐷𝑖))(AP‘𝐾)(𝐷𝑖)) ↔ ∃𝑚 ∈ (0...(𝐾 − 1))(𝐴 + (𝐷𝑖)) = ((𝐴 + (𝐷𝑖)) + (𝑚 · (𝐷𝑖)))))
5752, 56mpbird 247 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐴 + (𝐷𝑖)) ∈ ((𝐴 + (𝐷𝑖))(AP‘𝐾)(𝐷𝑖)))
5831, 57sseldd 3737 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐴 + (𝐷𝑖)) ∈ (1...𝑊))
5958ralrimiva 3096 . . . . . . . . . . . 12 (𝜑 → ∀𝑖 ∈ (1...𝑀)(𝐴 + (𝐷𝑖)) ∈ (1...𝑊))
60 fveq2 6344 . . . . . . . . . . . . . . 15 (𝑖 = 1 → (𝐷𝑖) = (𝐷‘1))
6160oveq2d 6821 . . . . . . . . . . . . . 14 (𝑖 = 1 → (𝐴 + (𝐷𝑖)) = (𝐴 + (𝐷‘1)))
6261eleq1d 2816 . . . . . . . . . . . . 13 (𝑖 = 1 → ((𝐴 + (𝐷𝑖)) ∈ (1...𝑊) ↔ (𝐴 + (𝐷‘1)) ∈ (1...𝑊)))
6362rspcv 3437 . . . . . . . . . . . 12 (1 ∈ (1...𝑀) → (∀𝑖 ∈ (1...𝑀)(𝐴 + (𝐷𝑖)) ∈ (1...𝑊) → (𝐴 + (𝐷‘1)) ∈ (1...𝑊)))
6414, 59, 63sylc 65 . . . . . . . . . . 11 (𝜑 → (𝐴 + (𝐷‘1)) ∈ (1...𝑊))
65 elfzle2 12530 . . . . . . . . . . 11 ((𝐴 + (𝐷‘1)) ∈ (1...𝑊) → (𝐴 + (𝐷‘1)) ≤ 𝑊)
6664, 65syl 17 . . . . . . . . . 10 (𝜑 → (𝐴 + (𝐷‘1)) ≤ 𝑊)
679, 17, 19, 22, 66letrd 10378 . . . . . . . . 9 (𝜑𝐴𝑊)
681, 11syl6eleq 2841 . . . . . . . . . 10 (𝜑𝐴 ∈ (ℤ‘1))
6918nnzd 11665 . . . . . . . . . 10 (𝜑𝑊 ∈ ℤ)
70 elfz5 12519 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘1) ∧ 𝑊 ∈ ℤ) → (𝐴 ∈ (1...𝑊) ↔ 𝐴𝑊))
7168, 69, 70syl2anc 696 . . . . . . . . 9 (𝜑 → (𝐴 ∈ (1...𝑊) ↔ 𝐴𝑊))
7267, 71mpbird 247 . . . . . . . 8 (𝜑𝐴 ∈ (1...𝑊))
73 eqidd 2753 . . . . . . . 8 (𝜑 → (𝐹𝐴) = (𝐹𝐴))
74 ffn 6198 . . . . . . . . 9 (𝐹:(1...𝑊)⟶𝑅𝐹 Fn (1...𝑊))
75 fniniseg 6493 . . . . . . . . 9 (𝐹 Fn (1...𝑊) → (𝐴 ∈ (𝐹 “ {(𝐹𝐴)}) ↔ (𝐴 ∈ (1...𝑊) ∧ (𝐹𝐴) = (𝐹𝐴))))
7626, 74, 753syl 18 . . . . . . . 8 (𝜑 → (𝐴 ∈ (𝐹 “ {(𝐹𝐴)}) ↔ (𝐴 ∈ (1...𝑊) ∧ (𝐹𝐴) = (𝐹𝐴))))
7772, 73, 76mpbir2and 995 . . . . . . 7 (𝜑𝐴 ∈ (𝐹 “ {(𝐹𝐴)}))
7877snssd 4477 . . . . . 6 (𝜑 → {𝐴} ⊆ (𝐹 “ {(𝐹𝐴)}))
79 fveq2 6344 . . . . . . . . . . . 12 (𝑖 = 𝐼 → (𝐷𝑖) = (𝐷𝐼))
8079oveq2d 6821 . . . . . . . . . . 11 (𝑖 = 𝐼 → (𝐴 + (𝐷𝑖)) = (𝐴 + (𝐷𝐼)))
8180, 79oveq12d 6823 . . . . . . . . . 10 (𝑖 = 𝐼 → ((𝐴 + (𝐷𝑖))(AP‘𝐾)(𝐷𝑖)) = ((𝐴 + (𝐷𝐼))(AP‘𝐾)(𝐷𝐼)))
8280fveq2d 6348 . . . . . . . . . . . 12 (𝑖 = 𝐼 → (𝐹‘(𝐴 + (𝐷𝑖))) = (𝐹‘(𝐴 + (𝐷𝐼))))
8382sneqd 4325 . . . . . . . . . . 11 (𝑖 = 𝐼 → {(𝐹‘(𝐴 + (𝐷𝑖)))} = {(𝐹‘(𝐴 + (𝐷𝐼)))})
8483imaeq2d 5616 . . . . . . . . . 10 (𝑖 = 𝐼 → (𝐹 “ {(𝐹‘(𝐴 + (𝐷𝑖)))}) = (𝐹 “ {(𝐹‘(𝐴 + (𝐷𝐼)))}))
8581, 84sseq12d 3767 . . . . . . . . 9 (𝑖 = 𝐼 → (((𝐴 + (𝐷𝑖))(AP‘𝐾)(𝐷𝑖)) ⊆ (𝐹 “ {(𝐹‘(𝐴 + (𝐷𝑖)))}) ↔ ((𝐴 + (𝐷𝐼))(AP‘𝐾)(𝐷𝐼)) ⊆ (𝐹 “ {(𝐹‘(𝐴 + (𝐷𝐼)))})))
8685rspcv 3437 . . . . . . . 8 (𝐼 ∈ (1...𝑀) → (∀𝑖 ∈ (1...𝑀)((𝐴 + (𝐷𝑖))(AP‘𝐾)(𝐷𝑖)) ⊆ (𝐹 “ {(𝐹‘(𝐴 + (𝐷𝑖)))}) → ((𝐴 + (𝐷𝐼))(AP‘𝐾)(𝐷𝐼)) ⊆ (𝐹 “ {(𝐹‘(𝐴 + (𝐷𝐼)))})))
873, 23, 86sylc 65 . . . . . . 7 (𝜑 → ((𝐴 + (𝐷𝐼))(AP‘𝐾)(𝐷𝐼)) ⊆ (𝐹 “ {(𝐹‘(𝐴 + (𝐷𝐼)))}))
88 vdwlem1.e . . . . . . . . 9 (𝜑 → (𝐹𝐴) = (𝐹‘(𝐴 + (𝐷𝐼))))
8988sneqd 4325 . . . . . . . 8 (𝜑 → {(𝐹𝐴)} = {(𝐹‘(𝐴 + (𝐷𝐼)))})
9089imaeq2d 5616 . . . . . . 7 (𝜑 → (𝐹 “ {(𝐹𝐴)}) = (𝐹 “ {(𝐹‘(𝐴 + (𝐷𝐼)))}))
9187, 90sseqtr4d 3775 . . . . . 6 (𝜑 → ((𝐴 + (𝐷𝐼))(AP‘𝐾)(𝐷𝐼)) ⊆ (𝐹 “ {(𝐹𝐴)}))
9278, 91unssd 3924 . . . . 5 (𝜑 → ({𝐴} ∪ ((𝐴 + (𝐷𝐼))(AP‘𝐾)(𝐷𝐼))) ⊆ (𝐹 “ {(𝐹𝐴)}))
938, 92eqsstrd 3772 . . . 4 (𝜑 → (𝐴(AP‘(𝐾 + 1))(𝐷𝐼)) ⊆ (𝐹 “ {(𝐹𝐴)}))
94 oveq1 6812 . . . . . 6 (𝑎 = 𝐴 → (𝑎(AP‘(𝐾 + 1))𝑑) = (𝐴(AP‘(𝐾 + 1))𝑑))
9594sseq1d 3765 . . . . 5 (𝑎 = 𝐴 → ((𝑎(AP‘(𝐾 + 1))𝑑) ⊆ (𝐹 “ {(𝐹𝐴)}) ↔ (𝐴(AP‘(𝐾 + 1))𝑑) ⊆ (𝐹 “ {(𝐹𝐴)})))
96 oveq2 6813 . . . . . 6 (𝑑 = (𝐷𝐼) → (𝐴(AP‘(𝐾 + 1))𝑑) = (𝐴(AP‘(𝐾 + 1))(𝐷𝐼)))
9796sseq1d 3765 . . . . 5 (𝑑 = (𝐷𝐼) → ((𝐴(AP‘(𝐾 + 1))𝑑) ⊆ (𝐹 “ {(𝐹𝐴)}) ↔ (𝐴(AP‘(𝐾 + 1))(𝐷𝐼)) ⊆ (𝐹 “ {(𝐹𝐴)})))
9895, 97rspc2ev 3455 . . . 4 ((𝐴 ∈ ℕ ∧ (𝐷𝐼) ∈ ℕ ∧ (𝐴(AP‘(𝐾 + 1))(𝐷𝐼)) ⊆ (𝐹 “ {(𝐹𝐴)})) → ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘(𝐾 + 1))𝑑) ⊆ (𝐹 “ {(𝐹𝐴)}))
991, 4, 93, 98syl3anc 1473 . . 3 (𝜑 → ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘(𝐾 + 1))𝑑) ⊆ (𝐹 “ {(𝐹𝐴)}))
100 fvex 6354 . . . 4 (𝐹𝐴) ∈ V
101 sneq 4323 . . . . . . 7 (𝑐 = (𝐹𝐴) → {𝑐} = {(𝐹𝐴)})
102101imaeq2d 5616 . . . . . 6 (𝑐 = (𝐹𝐴) → (𝐹 “ {𝑐}) = (𝐹 “ {(𝐹𝐴)}))
103102sseq2d 3766 . . . . 5 (𝑐 = (𝐹𝐴) → ((𝑎(AP‘(𝐾 + 1))𝑑) ⊆ (𝐹 “ {𝑐}) ↔ (𝑎(AP‘(𝐾 + 1))𝑑) ⊆ (𝐹 “ {(𝐹𝐴)})))
1041032rexbidv 3187 . . . 4 (𝑐 = (𝐹𝐴) → (∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘(𝐾 + 1))𝑑) ⊆ (𝐹 “ {𝑐}) ↔ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘(𝐾 + 1))𝑑) ⊆ (𝐹 “ {(𝐹𝐴)})))
105100, 104spcev 3432 . . 3 (∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘(𝐾 + 1))𝑑) ⊆ (𝐹 “ {(𝐹𝐴)}) → ∃𝑐𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘(𝐾 + 1))𝑑) ⊆ (𝐹 “ {𝑐}))
10699, 105syl 17 . 2 (𝜑 → ∃𝑐𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘(𝐾 + 1))𝑑) ⊆ (𝐹 “ {𝑐}))
107 ovex 6833 . . 3 (1...𝑊) ∈ V
108 peano2nn0 11517 . . . 4 (𝐾 ∈ ℕ0 → (𝐾 + 1) ∈ ℕ0)
1096, 108syl 17 . . 3 (𝜑 → (𝐾 + 1) ∈ ℕ0)
110107, 109, 26vdwmc 15876 . 2 (𝜑 → ((𝐾 + 1) MonoAP 𝐹 ↔ ∃𝑐𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘(𝐾 + 1))𝑑) ⊆ (𝐹 “ {𝑐})))
111106, 110mpbird 247 1 (𝜑 → (𝐾 + 1) MonoAP 𝐹)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   = wceq 1624  ∃wex 1845   ∈ wcel 2131  ∀wral 3042  ∃wrex 3043   ∪ cun 3705   ⊆ wss 3707  {csn 4313   class class class wbr 4796  ◡ccnv 5257  dom cdm 5258   “ cima 5261   Fn wfn 6036  ⟶wf 6037  ‘cfv 6041  (class class class)co 6805  Fincfn 8113  0cc0 10120  1c1 10121   + caddc 10123   · cmul 10125   ≤ cle 10259   − cmin 10450  ℕcn 11204  ℕ0cn0 11476  ℤcz 11561  ℤ≥cuz 11871  ...cfz 12511  APcvdwa 15863   MonoAP cvdwm 15864 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-8 2133  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732  ax-rep 4915  ax-sep 4925  ax-nul 4933  ax-pow 4984  ax-pr 5047  ax-un 7106  ax-cnex 10176  ax-resscn 10177  ax-1cn 10178  ax-icn 10179  ax-addcl 10180  ax-addrcl 10181  ax-mulcl 10182  ax-mulrcl 10183  ax-mulcom 10184  ax-addass 10185  ax-mulass 10186  ax-distr 10187  ax-i2m1 10188  ax-1ne0 10189  ax-1rid 10190  ax-rnegex 10191  ax-rrecex 10192  ax-cnre 10193  ax-pre-lttri 10194  ax-pre-lttrn 10195  ax-pre-ltadd 10196  ax-pre-mulgt0 10197 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1627  df-ex 1846  df-nf 1851  df-sb 2039  df-eu 2603  df-mo 2604  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-ne 2925  df-nel 3028  df-ral 3047  df-rex 3048  df-reu 3049  df-rab 3051  df-v 3334  df-sbc 3569  df-csb 3667  df-dif 3710  df-un 3712  df-in 3714  df-ss 3721  df-pss 3723  df-nul 4051  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-tp 4318  df-op 4320  df-uni 4581  df-iun 4666  df-br 4797  df-opab 4857  df-mpt 4874  df-tr 4897  df-id 5166  df-eprel 5171  df-po 5179  df-so 5180  df-fr 5217  df-we 5219  df-xp 5264  df-rel 5265  df-cnv 5266  df-co 5267  df-dm 5268  df-rn 5269  df-res 5270  df-ima 5271  df-pred 5833  df-ord 5879  df-on 5880  df-lim 5881  df-suc 5882  df-iota 6004  df-fun 6043  df-fn 6044  df-f 6045  df-f1 6046  df-fo 6047  df-f1o 6048  df-fv 6049  df-riota 6766  df-ov 6808  df-oprab 6809  df-mpt2 6810  df-om 7223  df-1st 7325  df-2nd 7326  df-wrecs 7568  df-recs 7629  df-rdg 7667  df-er 7903  df-en 8114  df-dom 8115  df-sdom 8116  df-pnf 10260  df-mnf 10261  df-xr 10262  df-ltxr 10263  df-le 10264  df-sub 10452  df-neg 10453  df-nn 11205  df-n0 11477  df-z 11562  df-uz 11872  df-rp 12018  df-fz 12512  df-vdwap 15866  df-vdwmc 15867 This theorem is referenced by:  vdwlem6  15884
 Copyright terms: Public domain W3C validator