MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vdwnn Structured version   Visualization version   GIF version

Theorem vdwnn 15486
Description: Van der Waerden's theorem, infinitary version. For any finite coloring 𝐹 of the positive integers, there is a color 𝑐 that contains arbitrarily long arithmetic progressions. (Contributed by Mario Carneiro, 13-Sep-2014.)
Assertion
Ref Expression
vdwnn ((𝑅 ∈ Fin ∧ 𝐹:ℕ⟶𝑅) → ∃𝑐𝑅𝑘 ∈ ℕ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}))
Distinct variable groups:   𝑎,𝑐,𝑑,𝑘,𝑚,𝐹   𝑅,𝑐
Allowed substitution hints:   𝑅(𝑘,𝑚,𝑎,𝑑)

Proof of Theorem vdwnn
Dummy variables 𝑢 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 785 . . 3 (((𝑅 ∈ Fin ∧ 𝐹:ℕ⟶𝑅) ∧ ¬ ∃𝑐𝑅𝑘 ∈ ℕ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})) → 𝑅 ∈ Fin)
2 simplr 787 . . 3 (((𝑅 ∈ Fin ∧ 𝐹:ℕ⟶𝑅) ∧ ¬ ∃𝑐𝑅𝑘 ∈ ℕ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})) → 𝐹:ℕ⟶𝑅)
3 oveq1 6534 . . . . . . . . . . 11 (𝑚 = 𝑤 → (𝑚 · 𝑑) = (𝑤 · 𝑑))
43oveq2d 6543 . . . . . . . . . 10 (𝑚 = 𝑤 → (𝑎 + (𝑚 · 𝑑)) = (𝑎 + (𝑤 · 𝑑)))
54eleq1d 2671 . . . . . . . . 9 (𝑚 = 𝑤 → ((𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑢}) ↔ (𝑎 + (𝑤 · 𝑑)) ∈ (𝐹 “ {𝑢})))
65cbvralv 3146 . . . . . . . 8 (∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑢}) ↔ ∀𝑤 ∈ (0...(𝑘 − 1))(𝑎 + (𝑤 · 𝑑)) ∈ (𝐹 “ {𝑢}))
7 oveq1 6534 . . . . . . . . . 10 (𝑎 = 𝑦 → (𝑎 + (𝑤 · 𝑑)) = (𝑦 + (𝑤 · 𝑑)))
87eleq1d 2671 . . . . . . . . 9 (𝑎 = 𝑦 → ((𝑎 + (𝑤 · 𝑑)) ∈ (𝐹 “ {𝑢}) ↔ (𝑦 + (𝑤 · 𝑑)) ∈ (𝐹 “ {𝑢})))
98ralbidv 2968 . . . . . . . 8 (𝑎 = 𝑦 → (∀𝑤 ∈ (0...(𝑘 − 1))(𝑎 + (𝑤 · 𝑑)) ∈ (𝐹 “ {𝑢}) ↔ ∀𝑤 ∈ (0...(𝑘 − 1))(𝑦 + (𝑤 · 𝑑)) ∈ (𝐹 “ {𝑢})))
106, 9syl5bb 270 . . . . . . 7 (𝑎 = 𝑦 → (∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑢}) ↔ ∀𝑤 ∈ (0...(𝑘 − 1))(𝑦 + (𝑤 · 𝑑)) ∈ (𝐹 “ {𝑢})))
11 oveq2 6535 . . . . . . . . . 10 (𝑑 = 𝑧 → (𝑤 · 𝑑) = (𝑤 · 𝑧))
1211oveq2d 6543 . . . . . . . . 9 (𝑑 = 𝑧 → (𝑦 + (𝑤 · 𝑑)) = (𝑦 + (𝑤 · 𝑧)))
1312eleq1d 2671 . . . . . . . 8 (𝑑 = 𝑧 → ((𝑦 + (𝑤 · 𝑑)) ∈ (𝐹 “ {𝑢}) ↔ (𝑦 + (𝑤 · 𝑧)) ∈ (𝐹 “ {𝑢})))
1413ralbidv 2968 . . . . . . 7 (𝑑 = 𝑧 → (∀𝑤 ∈ (0...(𝑘 − 1))(𝑦 + (𝑤 · 𝑑)) ∈ (𝐹 “ {𝑢}) ↔ ∀𝑤 ∈ (0...(𝑘 − 1))(𝑦 + (𝑤 · 𝑧)) ∈ (𝐹 “ {𝑢})))
1510, 14cbvrex2v 3155 . . . . . 6 (∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑢}) ↔ ∃𝑦 ∈ ℕ ∃𝑧 ∈ ℕ ∀𝑤 ∈ (0...(𝑘 − 1))(𝑦 + (𝑤 · 𝑧)) ∈ (𝐹 “ {𝑢}))
16 oveq1 6534 . . . . . . . . 9 (𝑘 = 𝑥 → (𝑘 − 1) = (𝑥 − 1))
1716oveq2d 6543 . . . . . . . 8 (𝑘 = 𝑥 → (0...(𝑘 − 1)) = (0...(𝑥 − 1)))
1817raleqdv 3120 . . . . . . 7 (𝑘 = 𝑥 → (∀𝑤 ∈ (0...(𝑘 − 1))(𝑦 + (𝑤 · 𝑧)) ∈ (𝐹 “ {𝑢}) ↔ ∀𝑤 ∈ (0...(𝑥 − 1))(𝑦 + (𝑤 · 𝑧)) ∈ (𝐹 “ {𝑢})))
19182rexbidv 3038 . . . . . 6 (𝑘 = 𝑥 → (∃𝑦 ∈ ℕ ∃𝑧 ∈ ℕ ∀𝑤 ∈ (0...(𝑘 − 1))(𝑦 + (𝑤 · 𝑧)) ∈ (𝐹 “ {𝑢}) ↔ ∃𝑦 ∈ ℕ ∃𝑧 ∈ ℕ ∀𝑤 ∈ (0...(𝑥 − 1))(𝑦 + (𝑤 · 𝑧)) ∈ (𝐹 “ {𝑢})))
2015, 19syl5bb 270 . . . . 5 (𝑘 = 𝑥 → (∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑢}) ↔ ∃𝑦 ∈ ℕ ∃𝑧 ∈ ℕ ∀𝑤 ∈ (0...(𝑥 − 1))(𝑦 + (𝑤 · 𝑧)) ∈ (𝐹 “ {𝑢})))
2120notbid 306 . . . 4 (𝑘 = 𝑥 → (¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑢}) ↔ ¬ ∃𝑦 ∈ ℕ ∃𝑧 ∈ ℕ ∀𝑤 ∈ (0...(𝑥 − 1))(𝑦 + (𝑤 · 𝑧)) ∈ (𝐹 “ {𝑢})))
2221cbvrabv 3171 . . 3 {𝑘 ∈ ℕ ∣ ¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑢})} = {𝑥 ∈ ℕ ∣ ¬ ∃𝑦 ∈ ℕ ∃𝑧 ∈ ℕ ∀𝑤 ∈ (0...(𝑥 − 1))(𝑦 + (𝑤 · 𝑧)) ∈ (𝐹 “ {𝑢})}
23 simpr 475 . . . . 5 (((𝑅 ∈ Fin ∧ 𝐹:ℕ⟶𝑅) ∧ ¬ ∃𝑐𝑅𝑘 ∈ ℕ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})) → ¬ ∃𝑐𝑅𝑘 ∈ ℕ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}))
24 sneq 4134 . . . . . . . . . . 11 (𝑐 = 𝑢 → {𝑐} = {𝑢})
2524imaeq2d 5372 . . . . . . . . . 10 (𝑐 = 𝑢 → (𝐹 “ {𝑐}) = (𝐹 “ {𝑢}))
2625eleq2d 2672 . . . . . . . . 9 (𝑐 = 𝑢 → ((𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}) ↔ (𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑢})))
2726ralbidv 2968 . . . . . . . 8 (𝑐 = 𝑢 → (∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}) ↔ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑢})))
28272rexbidv 3038 . . . . . . 7 (𝑐 = 𝑢 → (∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}) ↔ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑢})))
2928ralbidv 2968 . . . . . 6 (𝑐 = 𝑢 → (∀𝑘 ∈ ℕ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}) ↔ ∀𝑘 ∈ ℕ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑢})))
3029cbvrexv 3147 . . . . 5 (∃𝑐𝑅𝑘 ∈ ℕ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}) ↔ ∃𝑢𝑅𝑘 ∈ ℕ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑢}))
3123, 30sylnib 316 . . . 4 (((𝑅 ∈ Fin ∧ 𝐹:ℕ⟶𝑅) ∧ ¬ ∃𝑐𝑅𝑘 ∈ ℕ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})) → ¬ ∃𝑢𝑅𝑘 ∈ ℕ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑢}))
32 rabn0 3911 . . . . . . 7 ({𝑘 ∈ ℕ ∣ ¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑢})} ≠ ∅ ↔ ∃𝑘 ∈ ℕ ¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑢}))
33 rexnal 2977 . . . . . . 7 (∃𝑘 ∈ ℕ ¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑢}) ↔ ¬ ∀𝑘 ∈ ℕ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑢}))
3432, 33bitri 262 . . . . . 6 ({𝑘 ∈ ℕ ∣ ¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑢})} ≠ ∅ ↔ ¬ ∀𝑘 ∈ ℕ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑢}))
3534ralbii 2962 . . . . 5 (∀𝑢𝑅 {𝑘 ∈ ℕ ∣ ¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑢})} ≠ ∅ ↔ ∀𝑢𝑅 ¬ ∀𝑘 ∈ ℕ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑢}))
36 ralnex 2974 . . . . 5 (∀𝑢𝑅 ¬ ∀𝑘 ∈ ℕ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑢}) ↔ ¬ ∃𝑢𝑅𝑘 ∈ ℕ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑢}))
3735, 36bitri 262 . . . 4 (∀𝑢𝑅 {𝑘 ∈ ℕ ∣ ¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑢})} ≠ ∅ ↔ ¬ ∃𝑢𝑅𝑘 ∈ ℕ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑢}))
3831, 37sylibr 222 . . 3 (((𝑅 ∈ Fin ∧ 𝐹:ℕ⟶𝑅) ∧ ¬ ∃𝑐𝑅𝑘 ∈ ℕ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})) → ∀𝑢𝑅 {𝑘 ∈ ℕ ∣ ¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑢})} ≠ ∅)
391, 2, 22, 38vdwnnlem3 15485 . 2 ¬ ((𝑅 ∈ Fin ∧ 𝐹:ℕ⟶𝑅) ∧ ¬ ∃𝑐𝑅𝑘 ∈ ℕ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}))
40 iman 438 . 2 (((𝑅 ∈ Fin ∧ 𝐹:ℕ⟶𝑅) → ∃𝑐𝑅𝑘 ∈ ℕ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})) ↔ ¬ ((𝑅 ∈ Fin ∧ 𝐹:ℕ⟶𝑅) ∧ ¬ ∃𝑐𝑅𝑘 ∈ ℕ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})))
4139, 40mpbir 219 1 ((𝑅 ∈ Fin ∧ 𝐹:ℕ⟶𝑅) → ∃𝑐𝑅𝑘 ∈ ℕ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 382  wcel 1976  wne 2779  wral 2895  wrex 2896  {crab 2899  c0 3873  {csn 4124  ccnv 5027  cima 5031  wf 5786  (class class class)co 6527  Fincfn 7818  0cc0 9792  1c1 9793   + caddc 9795   · cmul 9797  cmin 10117  cn 10867  ...cfz 12152
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869  ax-pre-sup 9870
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-int 4405  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-om 6935  df-1st 7036  df-2nd 7037  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-1o 7424  df-2o 7425  df-oadd 7428  df-er 7606  df-map 7723  df-pm 7724  df-en 7819  df-dom 7820  df-sdom 7821  df-fin 7822  df-sup 8208  df-inf 8209  df-card 8625  df-cda 8850  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-nn 10868  df-2 10926  df-n0 11140  df-z 11211  df-uz 11520  df-rp 11665  df-fz 12153  df-fl 12410  df-hash 12935  df-vdwap 15456  df-vdwmc 15457  df-vdwpc 15458
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator