MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vdwnnlem1 Structured version   Visualization version   GIF version

Theorem vdwnnlem1 15623
Description: Corollary of vdw 15622, and lemma for vdwnn 15626. If 𝐹 is a coloring of the integers, then there are arbitrarily long monochromatic APs in 𝐹. (Contributed by Mario Carneiro, 13-Sep-2014.)
Assertion
Ref Expression
vdwnnlem1 ((𝑅 ∈ Fin ∧ 𝐹:ℕ⟶𝑅𝐾 ∈ ℕ0) → ∃𝑐𝑅𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}))
Distinct variable groups:   𝑎,𝑑,𝑚,𝑐,𝐾   𝑅,𝑎,𝑐,𝑑   𝐹,𝑎,𝑐,𝑑,𝑚
Allowed substitution hint:   𝑅(𝑚)

Proof of Theorem vdwnnlem1
Dummy variables 𝑓 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vdw 15622 . . 3 ((𝑅 ∈ Fin ∧ 𝐾 ∈ ℕ0) → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅𝑚 (1...𝑛))∃𝑐𝑅𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝑓 “ {𝑐}))
213adant2 1078 . 2 ((𝑅 ∈ Fin ∧ 𝐹:ℕ⟶𝑅𝐾 ∈ ℕ0) → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅𝑚 (1...𝑛))∃𝑐𝑅𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝑓 “ {𝑐}))
3 simpl2 1063 . . . . . . 7 (((𝑅 ∈ Fin ∧ 𝐹:ℕ⟶𝑅𝐾 ∈ ℕ0) ∧ 𝑛 ∈ ℕ) → 𝐹:ℕ⟶𝑅)
4 fzssuz 12324 . . . . . . . 8 (1...𝑛) ⊆ (ℤ‘1)
5 nnuz 11667 . . . . . . . 8 ℕ = (ℤ‘1)
64, 5sseqtr4i 3617 . . . . . . 7 (1...𝑛) ⊆ ℕ
7 fssres 6027 . . . . . . 7 ((𝐹:ℕ⟶𝑅 ∧ (1...𝑛) ⊆ ℕ) → (𝐹 ↾ (1...𝑛)):(1...𝑛)⟶𝑅)
83, 6, 7sylancl 693 . . . . . 6 (((𝑅 ∈ Fin ∧ 𝐹:ℕ⟶𝑅𝐾 ∈ ℕ0) ∧ 𝑛 ∈ ℕ) → (𝐹 ↾ (1...𝑛)):(1...𝑛)⟶𝑅)
9 simpl1 1062 . . . . . . 7 (((𝑅 ∈ Fin ∧ 𝐹:ℕ⟶𝑅𝐾 ∈ ℕ0) ∧ 𝑛 ∈ ℕ) → 𝑅 ∈ Fin)
10 ovex 6632 . . . . . . 7 (1...𝑛) ∈ V
11 elmapg 7815 . . . . . . 7 ((𝑅 ∈ Fin ∧ (1...𝑛) ∈ V) → ((𝐹 ↾ (1...𝑛)) ∈ (𝑅𝑚 (1...𝑛)) ↔ (𝐹 ↾ (1...𝑛)):(1...𝑛)⟶𝑅))
129, 10, 11sylancl 693 . . . . . 6 (((𝑅 ∈ Fin ∧ 𝐹:ℕ⟶𝑅𝐾 ∈ ℕ0) ∧ 𝑛 ∈ ℕ) → ((𝐹 ↾ (1...𝑛)) ∈ (𝑅𝑚 (1...𝑛)) ↔ (𝐹 ↾ (1...𝑛)):(1...𝑛)⟶𝑅))
138, 12mpbird 247 . . . . 5 (((𝑅 ∈ Fin ∧ 𝐹:ℕ⟶𝑅𝐾 ∈ ℕ0) ∧ 𝑛 ∈ ℕ) → (𝐹 ↾ (1...𝑛)) ∈ (𝑅𝑚 (1...𝑛)))
14 cnveq 5256 . . . . . . . . . . 11 (𝑓 = (𝐹 ↾ (1...𝑛)) → 𝑓 = (𝐹 ↾ (1...𝑛)))
1514imaeq1d 5424 . . . . . . . . . 10 (𝑓 = (𝐹 ↾ (1...𝑛)) → (𝑓 “ {𝑐}) = ((𝐹 ↾ (1...𝑛)) “ {𝑐}))
1615eleq2d 2684 . . . . . . . . 9 (𝑓 = (𝐹 ↾ (1...𝑛)) → ((𝑎 + (𝑚 · 𝑑)) ∈ (𝑓 “ {𝑐}) ↔ (𝑎 + (𝑚 · 𝑑)) ∈ ((𝐹 ↾ (1...𝑛)) “ {𝑐})))
1716ralbidv 2980 . . . . . . . 8 (𝑓 = (𝐹 ↾ (1...𝑛)) → (∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝑓 “ {𝑐}) ↔ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ ((𝐹 ↾ (1...𝑛)) “ {𝑐})))
18172rexbidv 3050 . . . . . . 7 (𝑓 = (𝐹 ↾ (1...𝑛)) → (∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝑓 “ {𝑐}) ↔ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ ((𝐹 ↾ (1...𝑛)) “ {𝑐})))
1918rexbidv 3045 . . . . . 6 (𝑓 = (𝐹 ↾ (1...𝑛)) → (∃𝑐𝑅𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝑓 “ {𝑐}) ↔ ∃𝑐𝑅𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ ((𝐹 ↾ (1...𝑛)) “ {𝑐})))
2019rspcv 3291 . . . . 5 ((𝐹 ↾ (1...𝑛)) ∈ (𝑅𝑚 (1...𝑛)) → (∀𝑓 ∈ (𝑅𝑚 (1...𝑛))∃𝑐𝑅𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝑓 “ {𝑐}) → ∃𝑐𝑅𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ ((𝐹 ↾ (1...𝑛)) “ {𝑐})))
2113, 20syl 17 . . . 4 (((𝑅 ∈ Fin ∧ 𝐹:ℕ⟶𝑅𝐾 ∈ ℕ0) ∧ 𝑛 ∈ ℕ) → (∀𝑓 ∈ (𝑅𝑚 (1...𝑛))∃𝑐𝑅𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝑓 “ {𝑐}) → ∃𝑐𝑅𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ ((𝐹 ↾ (1...𝑛)) “ {𝑐})))
22 resss 5381 . . . . . . . . . 10 (𝐹 ↾ (1...𝑛)) ⊆ 𝐹
23 cnvss 5254 . . . . . . . . . 10 ((𝐹 ↾ (1...𝑛)) ⊆ 𝐹(𝐹 ↾ (1...𝑛)) ⊆ 𝐹)
24 imass1 5459 . . . . . . . . . 10 ((𝐹 ↾ (1...𝑛)) ⊆ 𝐹 → ((𝐹 ↾ (1...𝑛)) “ {𝑐}) ⊆ (𝐹 “ {𝑐}))
2522, 23, 24mp2b 10 . . . . . . . . 9 ((𝐹 ↾ (1...𝑛)) “ {𝑐}) ⊆ (𝐹 “ {𝑐})
2625sseli 3579 . . . . . . . 8 ((𝑎 + (𝑚 · 𝑑)) ∈ ((𝐹 ↾ (1...𝑛)) “ {𝑐}) → (𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}))
2726ralimi 2947 . . . . . . 7 (∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ ((𝐹 ↾ (1...𝑛)) “ {𝑐}) → ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}))
2827reximi 3005 . . . . . 6 (∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ ((𝐹 ↾ (1...𝑛)) “ {𝑐}) → ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}))
2928reximi 3005 . . . . 5 (∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ ((𝐹 ↾ (1...𝑛)) “ {𝑐}) → ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}))
3029reximi 3005 . . . 4 (∃𝑐𝑅𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ ((𝐹 ↾ (1...𝑛)) “ {𝑐}) → ∃𝑐𝑅𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}))
3121, 30syl6 35 . . 3 (((𝑅 ∈ Fin ∧ 𝐹:ℕ⟶𝑅𝐾 ∈ ℕ0) ∧ 𝑛 ∈ ℕ) → (∀𝑓 ∈ (𝑅𝑚 (1...𝑛))∃𝑐𝑅𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝑓 “ {𝑐}) → ∃𝑐𝑅𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})))
3231rexlimdva 3024 . 2 ((𝑅 ∈ Fin ∧ 𝐹:ℕ⟶𝑅𝐾 ∈ ℕ0) → (∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅𝑚 (1...𝑛))∃𝑐𝑅𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝑓 “ {𝑐}) → ∃𝑐𝑅𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})))
332, 32mpd 15 1 ((𝑅 ∈ Fin ∧ 𝐹:ℕ⟶𝑅𝐾 ∈ ℕ0) → ∃𝑐𝑅𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1987  wral 2907  wrex 2908  Vcvv 3186  wss 3555  {csn 4148  ccnv 5073  cres 5076  cima 5077  wf 5843  cfv 5847  (class class class)co 6604  𝑚 cmap 7802  Fincfn 7899  0cc0 9880  1c1 9881   + caddc 9883   · cmul 9885  cmin 10210  cn 10964  0cn0 11236  cuz 11631  ...cfz 12268
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-2o 7506  df-oadd 7509  df-er 7687  df-map 7804  df-pm 7805  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-card 8709  df-cda 8934  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-2 11023  df-n0 11237  df-xnn0 11308  df-z 11322  df-uz 11632  df-rp 11777  df-fz 12269  df-hash 13058  df-vdwap 15596  df-vdwmc 15597  df-vdwpc 15598
This theorem is referenced by:  vdwnnlem3  15625
  Copyright terms: Public domain W3C validator