MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vfermltlALT Structured version   Visualization version   GIF version

Theorem vfermltlALT 16133
Description: Alternate proof of vfermltl 16132, not using Euler's theorem. (Contributed by AV, 21-Aug-2020.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
vfermltlALT ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → ((𝐴↑(𝑃 − 1)) mod 𝑃) = 1)

Proof of Theorem vfermltlALT
StepHypRef Expression
1 2m1e1 11757 . . . . . . . . . . 11 (2 − 1) = 1
21a1i 11 . . . . . . . . . 10 (𝑃 ∈ ℙ → (2 − 1) = 1)
32eqcomd 2827 . . . . . . . . 9 (𝑃 ∈ ℙ → 1 = (2 − 1))
43oveq2d 7166 . . . . . . . 8 (𝑃 ∈ ℙ → (𝑃 − 1) = (𝑃 − (2 − 1)))
5 prmz 16013 . . . . . . . . . 10 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
65zcnd 12082 . . . . . . . . 9 (𝑃 ∈ ℙ → 𝑃 ∈ ℂ)
7 2cnd 11709 . . . . . . . . 9 (𝑃 ∈ ℙ → 2 ∈ ℂ)
8 1cnd 10630 . . . . . . . . 9 (𝑃 ∈ ℙ → 1 ∈ ℂ)
96, 7, 8subsubd 11019 . . . . . . . 8 (𝑃 ∈ ℙ → (𝑃 − (2 − 1)) = ((𝑃 − 2) + 1))
104, 9eqtrd 2856 . . . . . . 7 (𝑃 ∈ ℙ → (𝑃 − 1) = ((𝑃 − 2) + 1))
11103ad2ant1 1129 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝑃 − 1) = ((𝑃 − 2) + 1))
1211oveq2d 7166 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝐴↑(𝑃 − 1)) = (𝐴↑((𝑃 − 2) + 1)))
13 zcn 11980 . . . . . . 7 (𝐴 ∈ ℤ → 𝐴 ∈ ℂ)
14133ad2ant2 1130 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → 𝐴 ∈ ℂ)
15 prmm2nn0 16036 . . . . . . 7 (𝑃 ∈ ℙ → (𝑃 − 2) ∈ ℕ0)
16153ad2ant1 1129 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝑃 − 2) ∈ ℕ0)
1714, 16expp1d 13505 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝐴↑((𝑃 − 2) + 1)) = ((𝐴↑(𝑃 − 2)) · 𝐴))
1812, 17eqtrd 2856 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝐴↑(𝑃 − 1)) = ((𝐴↑(𝑃 − 2)) · 𝐴))
1918oveq1d 7165 . . 3 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → ((𝐴↑(𝑃 − 1)) mod 𝑃) = (((𝐴↑(𝑃 − 2)) · 𝐴) mod 𝑃))
2015anim1i 616 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → ((𝑃 − 2) ∈ ℕ0𝐴 ∈ ℤ))
2120ancomd 464 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝐴 ∈ ℤ ∧ (𝑃 − 2) ∈ ℕ0))
22 zexpcl 13438 . . . . . . 7 ((𝐴 ∈ ℤ ∧ (𝑃 − 2) ∈ ℕ0) → (𝐴↑(𝑃 − 2)) ∈ ℤ)
2321, 22syl 17 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝐴↑(𝑃 − 2)) ∈ ℤ)
2423zred 12081 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝐴↑(𝑃 − 2)) ∈ ℝ)
25243adant3 1128 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝐴↑(𝑃 − 2)) ∈ ℝ)
26 simp2 1133 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → 𝐴 ∈ ℤ)
27 prmnn 16012 . . . . . 6 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
2827nnrpd 12423 . . . . 5 (𝑃 ∈ ℙ → 𝑃 ∈ ℝ+)
29283ad2ant1 1129 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → 𝑃 ∈ ℝ+)
30 modmulmod 13298 . . . 4 (((𝐴↑(𝑃 − 2)) ∈ ℝ ∧ 𝐴 ∈ ℤ ∧ 𝑃 ∈ ℝ+) → ((((𝐴↑(𝑃 − 2)) mod 𝑃) · 𝐴) mod 𝑃) = (((𝐴↑(𝑃 − 2)) · 𝐴) mod 𝑃))
3125, 26, 29, 30syl3anc 1367 . . 3 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → ((((𝐴↑(𝑃 − 2)) mod 𝑃) · 𝐴) mod 𝑃) = (((𝐴↑(𝑃 − 2)) · 𝐴) mod 𝑃))
32 zre 11979 . . . . . . . . . 10 (𝐴 ∈ ℤ → 𝐴 ∈ ℝ)
3332adantl 484 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → 𝐴 ∈ ℝ)
3415adantr 483 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝑃 − 2) ∈ ℕ0)
3533, 34reexpcld 13521 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝐴↑(𝑃 − 2)) ∈ ℝ)
3628adantr 483 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → 𝑃 ∈ ℝ+)
3735, 36modcld 13237 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → ((𝐴↑(𝑃 − 2)) mod 𝑃) ∈ ℝ)
3837recnd 10663 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → ((𝐴↑(𝑃 − 2)) mod 𝑃) ∈ ℂ)
3913adantl 484 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → 𝐴 ∈ ℂ)
4038, 39mulcomd 10656 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (((𝐴↑(𝑃 − 2)) mod 𝑃) · 𝐴) = (𝐴 · ((𝐴↑(𝑃 − 2)) mod 𝑃)))
41403adant3 1128 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (((𝐴↑(𝑃 − 2)) mod 𝑃) · 𝐴) = (𝐴 · ((𝐴↑(𝑃 − 2)) mod 𝑃)))
4241oveq1d 7165 . . 3 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → ((((𝐴↑(𝑃 − 2)) mod 𝑃) · 𝐴) mod 𝑃) = ((𝐴 · ((𝐴↑(𝑃 − 2)) mod 𝑃)) mod 𝑃))
4319, 31, 423eqtr2d 2862 . 2 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → ((𝐴↑(𝑃 − 1)) mod 𝑃) = ((𝐴 · ((𝐴↑(𝑃 − 2)) mod 𝑃)) mod 𝑃))
44 eqid 2821 . . . 4 ((𝐴↑(𝑃 − 2)) mod 𝑃) = ((𝐴↑(𝑃 − 2)) mod 𝑃)
4544modprminv 16130 . . 3 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (((𝐴↑(𝑃 − 2)) mod 𝑃) ∈ (1...(𝑃 − 1)) ∧ ((𝐴 · ((𝐴↑(𝑃 − 2)) mod 𝑃)) mod 𝑃) = 1))
4645simprd 498 . 2 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → ((𝐴 · ((𝐴↑(𝑃 − 2)) mod 𝑃)) mod 𝑃) = 1)
4743, 46eqtrd 2856 1 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → ((𝐴↑(𝑃 − 1)) mod 𝑃) = 1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  w3a 1083   = wceq 1533  wcel 2110   class class class wbr 5058  (class class class)co 7150  cc 10529  cr 10530  1c1 10532   + caddc 10534   · cmul 10536  cmin 10864  2c2 11686  0cn0 11891  cz 11975  +crp 12383  ...cfz 12886   mod cmo 13231  cexp 13423  cdvds 15601  cprime 16009
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-oadd 8100  df-er 8283  df-map 8402  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-sup 8900  df-inf 8901  df-dju 9324  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-n0 11892  df-xnn0 11962  df-z 11976  df-uz 12238  df-rp 12384  df-fz 12887  df-fzo 13028  df-fl 13156  df-mod 13232  df-seq 13364  df-exp 13424  df-hash 13685  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-dvds 15602  df-gcd 15838  df-prm 16010  df-phi 16097
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator