MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vitalilem1 Structured version   Visualization version   GIF version

Theorem vitalilem1 23277
Description: Lemma for vitali 23283. (Contributed by Mario Carneiro, 16-Jun-2014.) (Proof shortened by AV, 1-May-2021.)
Hypothesis
Ref Expression
vitali.1 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]1)) ∧ (𝑥𝑦) ∈ ℚ)}
Assertion
Ref Expression
vitalilem1 Er (0[,]1)
Distinct variable group:   𝑥,𝑦,

Proof of Theorem vitalilem1
Dummy variables 𝑣 𝑤 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vitali.1 . . 3 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]1)) ∧ (𝑥𝑦) ∈ ℚ)}
21relopabi 5210 . 2 Rel
3 simplr 791 . . . 4 (((𝑢 ∈ (0[,]1) ∧ 𝑣 ∈ (0[,]1)) ∧ (𝑢𝑣) ∈ ℚ) → 𝑣 ∈ (0[,]1))
4 simpll 789 . . . 4 (((𝑢 ∈ (0[,]1) ∧ 𝑣 ∈ (0[,]1)) ∧ (𝑢𝑣) ∈ ℚ) → 𝑢 ∈ (0[,]1))
5 unitssre 12258 . . . . . . . . 9 (0[,]1) ⊆ ℝ
65sseli 3584 . . . . . . . 8 (𝑢 ∈ (0[,]1) → 𝑢 ∈ ℝ)
76recnd 10013 . . . . . . 7 (𝑢 ∈ (0[,]1) → 𝑢 ∈ ℂ)
87ad2antrr 761 . . . . . 6 (((𝑢 ∈ (0[,]1) ∧ 𝑣 ∈ (0[,]1)) ∧ (𝑢𝑣) ∈ ℚ) → 𝑢 ∈ ℂ)
95sseli 3584 . . . . . . . 8 (𝑣 ∈ (0[,]1) → 𝑣 ∈ ℝ)
109recnd 10013 . . . . . . 7 (𝑣 ∈ (0[,]1) → 𝑣 ∈ ℂ)
1110ad2antlr 762 . . . . . 6 (((𝑢 ∈ (0[,]1) ∧ 𝑣 ∈ (0[,]1)) ∧ (𝑢𝑣) ∈ ℚ) → 𝑣 ∈ ℂ)
128, 11negsubdi2d 10353 . . . . 5 (((𝑢 ∈ (0[,]1) ∧ 𝑣 ∈ (0[,]1)) ∧ (𝑢𝑣) ∈ ℚ) → -(𝑢𝑣) = (𝑣𝑢))
13 qnegcl 11749 . . . . . 6 ((𝑢𝑣) ∈ ℚ → -(𝑢𝑣) ∈ ℚ)
1413adantl 482 . . . . 5 (((𝑢 ∈ (0[,]1) ∧ 𝑣 ∈ (0[,]1)) ∧ (𝑢𝑣) ∈ ℚ) → -(𝑢𝑣) ∈ ℚ)
1512, 14eqeltrrd 2705 . . . 4 (((𝑢 ∈ (0[,]1) ∧ 𝑣 ∈ (0[,]1)) ∧ (𝑢𝑣) ∈ ℚ) → (𝑣𝑢) ∈ ℚ)
163, 4, 15jca31 556 . . 3 (((𝑢 ∈ (0[,]1) ∧ 𝑣 ∈ (0[,]1)) ∧ (𝑢𝑣) ∈ ℚ) → ((𝑣 ∈ (0[,]1) ∧ 𝑢 ∈ (0[,]1)) ∧ (𝑣𝑢) ∈ ℚ))
17 oveq12 6614 . . . . 5 ((𝑥 = 𝑢𝑦 = 𝑣) → (𝑥𝑦) = (𝑢𝑣))
1817eleq1d 2688 . . . 4 ((𝑥 = 𝑢𝑦 = 𝑣) → ((𝑥𝑦) ∈ ℚ ↔ (𝑢𝑣) ∈ ℚ))
1918, 1brab2ga 5160 . . 3 (𝑢 𝑣 ↔ ((𝑢 ∈ (0[,]1) ∧ 𝑣 ∈ (0[,]1)) ∧ (𝑢𝑣) ∈ ℚ))
20 oveq12 6614 . . . . 5 ((𝑥 = 𝑣𝑦 = 𝑢) → (𝑥𝑦) = (𝑣𝑢))
2120eleq1d 2688 . . . 4 ((𝑥 = 𝑣𝑦 = 𝑢) → ((𝑥𝑦) ∈ ℚ ↔ (𝑣𝑢) ∈ ℚ))
2221, 1brab2ga 5160 . . 3 (𝑣 𝑢 ↔ ((𝑣 ∈ (0[,]1) ∧ 𝑢 ∈ (0[,]1)) ∧ (𝑣𝑢) ∈ ℚ))
2316, 19, 223imtr4i 281 . 2 (𝑢 𝑣𝑣 𝑢)
24 simpl 473 . . . . . . 7 ((𝑢 𝑣𝑣 𝑤) → 𝑢 𝑣)
2524, 19sylib 208 . . . . . 6 ((𝑢 𝑣𝑣 𝑤) → ((𝑢 ∈ (0[,]1) ∧ 𝑣 ∈ (0[,]1)) ∧ (𝑢𝑣) ∈ ℚ))
2625simpld 475 . . . . 5 ((𝑢 𝑣𝑣 𝑤) → (𝑢 ∈ (0[,]1) ∧ 𝑣 ∈ (0[,]1)))
2726simpld 475 . . . 4 ((𝑢 𝑣𝑣 𝑤) → 𝑢 ∈ (0[,]1))
28 simpr 477 . . . . . . 7 ((𝑢 𝑣𝑣 𝑤) → 𝑣 𝑤)
29 oveq12 6614 . . . . . . . . 9 ((𝑥 = 𝑣𝑦 = 𝑤) → (𝑥𝑦) = (𝑣𝑤))
3029eleq1d 2688 . . . . . . . 8 ((𝑥 = 𝑣𝑦 = 𝑤) → ((𝑥𝑦) ∈ ℚ ↔ (𝑣𝑤) ∈ ℚ))
3130, 1brab2ga 5160 . . . . . . 7 (𝑣 𝑤 ↔ ((𝑣 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1)) ∧ (𝑣𝑤) ∈ ℚ))
3228, 31sylib 208 . . . . . 6 ((𝑢 𝑣𝑣 𝑤) → ((𝑣 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1)) ∧ (𝑣𝑤) ∈ ℚ))
3332simpld 475 . . . . 5 ((𝑢 𝑣𝑣 𝑤) → (𝑣 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1)))
3433simprd 479 . . . 4 ((𝑢 𝑣𝑣 𝑤) → 𝑤 ∈ (0[,]1))
3527, 34jca 554 . . 3 ((𝑢 𝑣𝑣 𝑤) → (𝑢 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1)))
3627, 7syl 17 . . . . 5 ((𝑢 𝑣𝑣 𝑤) → 𝑢 ∈ ℂ)
3725, 11syl 17 . . . . 5 ((𝑢 𝑣𝑣 𝑤) → 𝑣 ∈ ℂ)
385, 34sseldi 3586 . . . . . 6 ((𝑢 𝑣𝑣 𝑤) → 𝑤 ∈ ℝ)
3938recnd 10013 . . . . 5 ((𝑢 𝑣𝑣 𝑤) → 𝑤 ∈ ℂ)
4036, 37, 39npncand 10361 . . . 4 ((𝑢 𝑣𝑣 𝑤) → ((𝑢𝑣) + (𝑣𝑤)) = (𝑢𝑤))
4125simprd 479 . . . . 5 ((𝑢 𝑣𝑣 𝑤) → (𝑢𝑣) ∈ ℚ)
4232simprd 479 . . . . 5 ((𝑢 𝑣𝑣 𝑤) → (𝑣𝑤) ∈ ℚ)
43 qaddcl 11748 . . . . 5 (((𝑢𝑣) ∈ ℚ ∧ (𝑣𝑤) ∈ ℚ) → ((𝑢𝑣) + (𝑣𝑤)) ∈ ℚ)
4441, 42, 43syl2anc 692 . . . 4 ((𝑢 𝑣𝑣 𝑤) → ((𝑢𝑣) + (𝑣𝑤)) ∈ ℚ)
4540, 44eqeltrrd 2705 . . 3 ((𝑢 𝑣𝑣 𝑤) → (𝑢𝑤) ∈ ℚ)
46 oveq12 6614 . . . . 5 ((𝑥 = 𝑢𝑦 = 𝑤) → (𝑥𝑦) = (𝑢𝑤))
4746eleq1d 2688 . . . 4 ((𝑥 = 𝑢𝑦 = 𝑤) → ((𝑥𝑦) ∈ ℚ ↔ (𝑢𝑤) ∈ ℚ))
4847, 1brab2ga 5160 . . 3 (𝑢 𝑤 ↔ ((𝑢 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1)) ∧ (𝑢𝑤) ∈ ℚ))
4935, 45, 48sylanbrc 697 . 2 ((𝑢 𝑣𝑣 𝑤) → 𝑢 𝑤)
507subidd 10325 . . . . . 6 (𝑢 ∈ (0[,]1) → (𝑢𝑢) = 0)
51 0z 11333 . . . . . . 7 0 ∈ ℤ
52 zq 11738 . . . . . . 7 (0 ∈ ℤ → 0 ∈ ℚ)
5351, 52ax-mp 5 . . . . . 6 0 ∈ ℚ
5450, 53syl6eqel 2712 . . . . 5 (𝑢 ∈ (0[,]1) → (𝑢𝑢) ∈ ℚ)
5554adantr 481 . . . 4 ((𝑢 ∈ (0[,]1) ∧ 𝑢 ∈ (0[,]1)) → (𝑢𝑢) ∈ ℚ)
5655pm4.71i 663 . . 3 ((𝑢 ∈ (0[,]1) ∧ 𝑢 ∈ (0[,]1)) ↔ ((𝑢 ∈ (0[,]1) ∧ 𝑢 ∈ (0[,]1)) ∧ (𝑢𝑢) ∈ ℚ))
57 pm4.24 674 . . 3 (𝑢 ∈ (0[,]1) ↔ (𝑢 ∈ (0[,]1) ∧ 𝑢 ∈ (0[,]1)))
58 oveq12 6614 . . . . 5 ((𝑥 = 𝑢𝑦 = 𝑢) → (𝑥𝑦) = (𝑢𝑢))
5958eleq1d 2688 . . . 4 ((𝑥 = 𝑢𝑦 = 𝑢) → ((𝑥𝑦) ∈ ℚ ↔ (𝑢𝑢) ∈ ℚ))
6059, 1brab2ga 5160 . . 3 (𝑢 𝑢 ↔ ((𝑢 ∈ (0[,]1) ∧ 𝑢 ∈ (0[,]1)) ∧ (𝑢𝑢) ∈ ℚ))
6156, 57, 603bitr4i 292 . 2 (𝑢 ∈ (0[,]1) ↔ 𝑢 𝑢)
622, 23, 49, 61iseri 7715 1 Er (0[,]1)
Colors of variables: wff setvar class
Syntax hints:  wa 384   = wceq 1480  wcel 1992   class class class wbr 4618  {copab 4677  (class class class)co 6605   Er wer 7685  cc 9879  cr 9880  0cc0 9881  1c1 9882   + caddc 9884  cmin 10211  -cneg 10212  cz 11322  cq 11732  [,]cicc 12117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903  ax-cnex 9937  ax-resscn 9938  ax-1cn 9939  ax-icn 9940  ax-addcl 9941  ax-addrcl 9942  ax-mulcl 9943  ax-mulrcl 9944  ax-mulcom 9945  ax-addass 9946  ax-mulass 9947  ax-distr 9948  ax-i2m1 9949  ax-1ne0 9950  ax-1rid 9951  ax-rnegex 9952  ax-rrecex 9953  ax-cnre 9954  ax-pre-lttri 9955  ax-pre-lttrn 9956  ax-pre-ltadd 9957  ax-pre-mulgt0 9958
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-nel 2900  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5642  df-ord 5688  df-on 5689  df-lim 5690  df-suc 5691  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-riota 6566  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-om 7014  df-1st 7116  df-2nd 7117  df-wrecs 7353  df-recs 7414  df-rdg 7452  df-er 7688  df-en 7901  df-dom 7902  df-sdom 7903  df-pnf 10021  df-mnf 10022  df-xr 10023  df-ltxr 10024  df-le 10025  df-sub 10213  df-neg 10214  df-div 10630  df-nn 10966  df-n0 11238  df-z 11323  df-q 11733  df-icc 12121
This theorem is referenced by:  vitalilem2  23279  vitalilem3  23280  vitalilem5  23282  vitali  23283
  Copyright terms: Public domain W3C validator