MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vitalilem1 Structured version   Visualization version   GIF version

Theorem vitalilem1 24203
Description: Lemma for vitali 24208. (Contributed by Mario Carneiro, 16-Jun-2014.) (Proof shortened by AV, 1-May-2021.)
Hypothesis
Ref Expression
vitali.1 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]1)) ∧ (𝑥𝑦) ∈ ℚ)}
Assertion
Ref Expression
vitalilem1 Er (0[,]1)
Distinct variable group:   𝑥,𝑦,

Proof of Theorem vitalilem1
Dummy variables 𝑣 𝑤 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vitali.1 . . 3 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]1)) ∧ (𝑥𝑦) ∈ ℚ)}
21relopabi 5688 . 2 Rel
3 simplr 767 . . . 4 (((𝑢 ∈ (0[,]1) ∧ 𝑣 ∈ (0[,]1)) ∧ (𝑢𝑣) ∈ ℚ) → 𝑣 ∈ (0[,]1))
4 simpll 765 . . . 4 (((𝑢 ∈ (0[,]1) ∧ 𝑣 ∈ (0[,]1)) ∧ (𝑢𝑣) ∈ ℚ) → 𝑢 ∈ (0[,]1))
5 unitssre 12879 . . . . . . . . 9 (0[,]1) ⊆ ℝ
65sseli 3962 . . . . . . . 8 (𝑢 ∈ (0[,]1) → 𝑢 ∈ ℝ)
76recnd 10663 . . . . . . 7 (𝑢 ∈ (0[,]1) → 𝑢 ∈ ℂ)
87ad2antrr 724 . . . . . 6 (((𝑢 ∈ (0[,]1) ∧ 𝑣 ∈ (0[,]1)) ∧ (𝑢𝑣) ∈ ℚ) → 𝑢 ∈ ℂ)
95sseli 3962 . . . . . . . 8 (𝑣 ∈ (0[,]1) → 𝑣 ∈ ℝ)
109recnd 10663 . . . . . . 7 (𝑣 ∈ (0[,]1) → 𝑣 ∈ ℂ)
1110ad2antlr 725 . . . . . 6 (((𝑢 ∈ (0[,]1) ∧ 𝑣 ∈ (0[,]1)) ∧ (𝑢𝑣) ∈ ℚ) → 𝑣 ∈ ℂ)
128, 11negsubdi2d 11007 . . . . 5 (((𝑢 ∈ (0[,]1) ∧ 𝑣 ∈ (0[,]1)) ∧ (𝑢𝑣) ∈ ℚ) → -(𝑢𝑣) = (𝑣𝑢))
13 qnegcl 12359 . . . . . 6 ((𝑢𝑣) ∈ ℚ → -(𝑢𝑣) ∈ ℚ)
1413adantl 484 . . . . 5 (((𝑢 ∈ (0[,]1) ∧ 𝑣 ∈ (0[,]1)) ∧ (𝑢𝑣) ∈ ℚ) → -(𝑢𝑣) ∈ ℚ)
1512, 14eqeltrrd 2914 . . . 4 (((𝑢 ∈ (0[,]1) ∧ 𝑣 ∈ (0[,]1)) ∧ (𝑢𝑣) ∈ ℚ) → (𝑣𝑢) ∈ ℚ)
163, 4, 15jca31 517 . . 3 (((𝑢 ∈ (0[,]1) ∧ 𝑣 ∈ (0[,]1)) ∧ (𝑢𝑣) ∈ ℚ) → ((𝑣 ∈ (0[,]1) ∧ 𝑢 ∈ (0[,]1)) ∧ (𝑣𝑢) ∈ ℚ))
17 oveq12 7159 . . . . 5 ((𝑥 = 𝑢𝑦 = 𝑣) → (𝑥𝑦) = (𝑢𝑣))
1817eleq1d 2897 . . . 4 ((𝑥 = 𝑢𝑦 = 𝑣) → ((𝑥𝑦) ∈ ℚ ↔ (𝑢𝑣) ∈ ℚ))
1918, 1brab2a 5638 . . 3 (𝑢 𝑣 ↔ ((𝑢 ∈ (0[,]1) ∧ 𝑣 ∈ (0[,]1)) ∧ (𝑢𝑣) ∈ ℚ))
20 oveq12 7159 . . . . 5 ((𝑥 = 𝑣𝑦 = 𝑢) → (𝑥𝑦) = (𝑣𝑢))
2120eleq1d 2897 . . . 4 ((𝑥 = 𝑣𝑦 = 𝑢) → ((𝑥𝑦) ∈ ℚ ↔ (𝑣𝑢) ∈ ℚ))
2221, 1brab2a 5638 . . 3 (𝑣 𝑢 ↔ ((𝑣 ∈ (0[,]1) ∧ 𝑢 ∈ (0[,]1)) ∧ (𝑣𝑢) ∈ ℚ))
2316, 19, 223imtr4i 294 . 2 (𝑢 𝑣𝑣 𝑢)
24 simpl 485 . . . . . 6 ((𝑢 𝑣𝑣 𝑤) → 𝑢 𝑣)
2524, 19sylib 220 . . . . 5 ((𝑢 𝑣𝑣 𝑤) → ((𝑢 ∈ (0[,]1) ∧ 𝑣 ∈ (0[,]1)) ∧ (𝑢𝑣) ∈ ℚ))
2625simpld 497 . . . 4 ((𝑢 𝑣𝑣 𝑤) → (𝑢 ∈ (0[,]1) ∧ 𝑣 ∈ (0[,]1)))
2726simpld 497 . . 3 ((𝑢 𝑣𝑣 𝑤) → 𝑢 ∈ (0[,]1))
28 simpr 487 . . . . . 6 ((𝑢 𝑣𝑣 𝑤) → 𝑣 𝑤)
29 oveq12 7159 . . . . . . . 8 ((𝑥 = 𝑣𝑦 = 𝑤) → (𝑥𝑦) = (𝑣𝑤))
3029eleq1d 2897 . . . . . . 7 ((𝑥 = 𝑣𝑦 = 𝑤) → ((𝑥𝑦) ∈ ℚ ↔ (𝑣𝑤) ∈ ℚ))
3130, 1brab2a 5638 . . . . . 6 (𝑣 𝑤 ↔ ((𝑣 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1)) ∧ (𝑣𝑤) ∈ ℚ))
3228, 31sylib 220 . . . . 5 ((𝑢 𝑣𝑣 𝑤) → ((𝑣 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1)) ∧ (𝑣𝑤) ∈ ℚ))
3332simpld 497 . . . 4 ((𝑢 𝑣𝑣 𝑤) → (𝑣 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1)))
3433simprd 498 . . 3 ((𝑢 𝑣𝑣 𝑤) → 𝑤 ∈ (0[,]1))
3527, 7syl 17 . . . . 5 ((𝑢 𝑣𝑣 𝑤) → 𝑢 ∈ ℂ)
3625, 11syl 17 . . . . 5 ((𝑢 𝑣𝑣 𝑤) → 𝑣 ∈ ℂ)
375, 34sseldi 3964 . . . . . 6 ((𝑢 𝑣𝑣 𝑤) → 𝑤 ∈ ℝ)
3837recnd 10663 . . . . 5 ((𝑢 𝑣𝑣 𝑤) → 𝑤 ∈ ℂ)
3935, 36, 38npncand 11015 . . . 4 ((𝑢 𝑣𝑣 𝑤) → ((𝑢𝑣) + (𝑣𝑤)) = (𝑢𝑤))
4025simprd 498 . . . . 5 ((𝑢 𝑣𝑣 𝑤) → (𝑢𝑣) ∈ ℚ)
4132simprd 498 . . . . 5 ((𝑢 𝑣𝑣 𝑤) → (𝑣𝑤) ∈ ℚ)
42 qaddcl 12358 . . . . 5 (((𝑢𝑣) ∈ ℚ ∧ (𝑣𝑤) ∈ ℚ) → ((𝑢𝑣) + (𝑣𝑤)) ∈ ℚ)
4340, 41, 42syl2anc 586 . . . 4 ((𝑢 𝑣𝑣 𝑤) → ((𝑢𝑣) + (𝑣𝑤)) ∈ ℚ)
4439, 43eqeltrrd 2914 . . 3 ((𝑢 𝑣𝑣 𝑤) → (𝑢𝑤) ∈ ℚ)
45 oveq12 7159 . . . . 5 ((𝑥 = 𝑢𝑦 = 𝑤) → (𝑥𝑦) = (𝑢𝑤))
4645eleq1d 2897 . . . 4 ((𝑥 = 𝑢𝑦 = 𝑤) → ((𝑥𝑦) ∈ ℚ ↔ (𝑢𝑤) ∈ ℚ))
4746, 1brab2a 5638 . . 3 (𝑢 𝑤 ↔ ((𝑢 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1)) ∧ (𝑢𝑤) ∈ ℚ))
4827, 34, 44, 47syl21anbrc 1340 . 2 ((𝑢 𝑣𝑣 𝑤) → 𝑢 𝑤)
497subidd 10979 . . . . . 6 (𝑢 ∈ (0[,]1) → (𝑢𝑢) = 0)
50 0z 11986 . . . . . . 7 0 ∈ ℤ
51 zq 12348 . . . . . . 7 (0 ∈ ℤ → 0 ∈ ℚ)
5250, 51ax-mp 5 . . . . . 6 0 ∈ ℚ
5349, 52eqeltrdi 2921 . . . . 5 (𝑢 ∈ (0[,]1) → (𝑢𝑢) ∈ ℚ)
5453adantr 483 . . . 4 ((𝑢 ∈ (0[,]1) ∧ 𝑢 ∈ (0[,]1)) → (𝑢𝑢) ∈ ℚ)
5554pm4.71i 562 . . 3 ((𝑢 ∈ (0[,]1) ∧ 𝑢 ∈ (0[,]1)) ↔ ((𝑢 ∈ (0[,]1) ∧ 𝑢 ∈ (0[,]1)) ∧ (𝑢𝑢) ∈ ℚ))
56 pm4.24 566 . . 3 (𝑢 ∈ (0[,]1) ↔ (𝑢 ∈ (0[,]1) ∧ 𝑢 ∈ (0[,]1)))
57 oveq12 7159 . . . . 5 ((𝑥 = 𝑢𝑦 = 𝑢) → (𝑥𝑦) = (𝑢𝑢))
5857eleq1d 2897 . . . 4 ((𝑥 = 𝑢𝑦 = 𝑢) → ((𝑥𝑦) ∈ ℚ ↔ (𝑢𝑢) ∈ ℚ))
5958, 1brab2a 5638 . . 3 (𝑢 𝑢 ↔ ((𝑢 ∈ (0[,]1) ∧ 𝑢 ∈ (0[,]1)) ∧ (𝑢𝑢) ∈ ℚ))
6055, 56, 593bitr4i 305 . 2 (𝑢 ∈ (0[,]1) ↔ 𝑢 𝑢)
612, 23, 48, 60iseri 8310 1 Er (0[,]1)
Colors of variables: wff setvar class
Syntax hints:  wa 398   = wceq 1533  wcel 2110   class class class wbr 5058  {copab 5120  (class class class)co 7150   Er wer 8280  cc 10529  cr 10530  0cc0 10531  1c1 10532   + caddc 10534  cmin 10864  -cneg 10865  cz 11975  cq 12342  [,]cicc 12735
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-n0 11892  df-z 11976  df-q 12343  df-icc 12739
This theorem is referenced by:  vitalilem2  24204  vitalilem3  24205  vitalilem5  24207  vitali  24208
  Copyright terms: Public domain W3C validator