MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vmadivsumb Structured version   Visualization version   GIF version

Theorem vmadivsumb 24917
Description: Give a total bound on the von Mangoldt sum. (Contributed by Mario Carneiro, 30-May-2016.)
Assertion
Ref Expression
vmadivsumb 𝑐 ∈ ℝ+𝑥 ∈ (1[,)+∞)(abs‘(Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥))) ≤ 𝑐
Distinct variable group:   𝑛,𝑐,𝑥

Proof of Theorem vmadivsumb
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 1re 9896 . . . . . . . . 9 1 ∈ ℝ
2 elicopnf 12099 . . . . . . . . 9 (1 ∈ ℝ → (𝑥 ∈ (1[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 1 ≤ 𝑥)))
31, 2mp1i 13 . . . . . . . 8 (⊤ → (𝑥 ∈ (1[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 1 ≤ 𝑥)))
43simprbda 651 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (1[,)+∞)) → 𝑥 ∈ ℝ)
5 1rp 11671 . . . . . . . 8 1 ∈ ℝ+
65a1i 11 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (1[,)+∞)) → 1 ∈ ℝ+)
73simplbda 652 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (1[,)+∞)) → 1 ≤ 𝑥)
84, 6, 7rpgecld 11746 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (1[,)+∞)) → 𝑥 ∈ ℝ+)
98ex 449 . . . . 5 (⊤ → (𝑥 ∈ (1[,)+∞) → 𝑥 ∈ ℝ+))
109ssrdv 3574 . . . 4 (⊤ → (1[,)+∞) ⊆ ℝ+)
11 rpssre 11678 . . . 4 + ⊆ ℝ
1210, 11syl6ss 3580 . . 3 (⊤ → (1[,)+∞) ⊆ ℝ)
131a1i 11 . . 3 (⊤ → 1 ∈ ℝ)
14 fzfid 12592 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (1[,)+∞)) → (1...(⌊‘𝑥)) ∈ Fin)
15 elfznn 12199 . . . . . . . . 9 (𝑛 ∈ (1...(⌊‘𝑥)) → 𝑛 ∈ ℕ)
1615adantl 481 . . . . . . . 8 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℕ)
17 vmacl 24589 . . . . . . . 8 (𝑛 ∈ ℕ → (Λ‘𝑛) ∈ ℝ)
1816, 17syl 17 . . . . . . 7 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (Λ‘𝑛) ∈ ℝ)
1918, 16nndivred 10919 . . . . . 6 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) / 𝑛) ∈ ℝ)
2014, 19fsumrecl 14261 . . . . 5 ((⊤ ∧ 𝑥 ∈ (1[,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) ∈ ℝ)
218relogcld 24118 . . . . 5 ((⊤ ∧ 𝑥 ∈ (1[,)+∞)) → (log‘𝑥) ∈ ℝ)
2220, 21resubcld 10310 . . . 4 ((⊤ ∧ 𝑥 ∈ (1[,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥)) ∈ ℝ)
2322recnd 9925 . . 3 ((⊤ ∧ 𝑥 ∈ (1[,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥)) ∈ ℂ)
24 vmadivsum 24916 . . . . 5 (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥))) ∈ 𝑂(1)
2524a1i 11 . . . 4 (⊤ → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥))) ∈ 𝑂(1))
2610, 25o1res2 14091 . . 3 (⊤ → (𝑥 ∈ (1[,)+∞) ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥))) ∈ 𝑂(1))
27 fzfid 12592 . . . . 5 ((⊤ ∧ (𝑦 ∈ ℝ ∧ 1 ≤ 𝑦)) → (1...(⌊‘𝑦)) ∈ Fin)
28 elfznn 12199 . . . . . . . 8 (𝑛 ∈ (1...(⌊‘𝑦)) → 𝑛 ∈ ℕ)
2928adantl 481 . . . . . . 7 (((⊤ ∧ (𝑦 ∈ ℝ ∧ 1 ≤ 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘𝑦))) → 𝑛 ∈ ℕ)
3029, 17syl 17 . . . . . 6 (((⊤ ∧ (𝑦 ∈ ℝ ∧ 1 ≤ 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘𝑦))) → (Λ‘𝑛) ∈ ℝ)
3130, 29nndivred 10919 . . . . 5 (((⊤ ∧ (𝑦 ∈ ℝ ∧ 1 ≤ 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘𝑦))) → ((Λ‘𝑛) / 𝑛) ∈ ℝ)
3227, 31fsumrecl 14261 . . . 4 ((⊤ ∧ (𝑦 ∈ ℝ ∧ 1 ≤ 𝑦)) → Σ𝑛 ∈ (1...(⌊‘𝑦))((Λ‘𝑛) / 𝑛) ∈ ℝ)
33 simprl 790 . . . . . 6 ((⊤ ∧ (𝑦 ∈ ℝ ∧ 1 ≤ 𝑦)) → 𝑦 ∈ ℝ)
345a1i 11 . . . . . 6 ((⊤ ∧ (𝑦 ∈ ℝ ∧ 1 ≤ 𝑦)) → 1 ∈ ℝ+)
35 simprr 792 . . . . . 6 ((⊤ ∧ (𝑦 ∈ ℝ ∧ 1 ≤ 𝑦)) → 1 ≤ 𝑦)
3633, 34, 35rpgecld 11746 . . . . 5 ((⊤ ∧ (𝑦 ∈ ℝ ∧ 1 ≤ 𝑦)) → 𝑦 ∈ ℝ+)
3736relogcld 24118 . . . 4 ((⊤ ∧ (𝑦 ∈ ℝ ∧ 1 ≤ 𝑦)) → (log‘𝑦) ∈ ℝ)
3832, 37readdcld 9926 . . 3 ((⊤ ∧ (𝑦 ∈ ℝ ∧ 1 ≤ 𝑦)) → (Σ𝑛 ∈ (1...(⌊‘𝑦))((Λ‘𝑛) / 𝑛) + (log‘𝑦)) ∈ ℝ)
3922adantr 480 . . . . . 6 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥)) ∈ ℝ)
4039recnd 9925 . . . . 5 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥)) ∈ ℂ)
4140abscld 13972 . . . 4 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (abs‘(Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥))) ∈ ℝ)
4220adantr 480 . . . . 5 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) ∈ ℝ)
438adantr 480 . . . . . 6 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 𝑥 ∈ ℝ+)
4443relogcld 24118 . . . . 5 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (log‘𝑥) ∈ ℝ)
4542, 44readdcld 9926 . . . 4 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) + (log‘𝑥)) ∈ ℝ)
4638ad2ant2r 779 . . . 4 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (Σ𝑛 ∈ (1...(⌊‘𝑦))((Λ‘𝑛) / 𝑛) + (log‘𝑦)) ∈ ℝ)
4742recnd 9925 . . . . . 6 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) ∈ ℂ)
4844recnd 9925 . . . . . 6 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (log‘𝑥) ∈ ℂ)
4947, 48abs2dif2d 13994 . . . . 5 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (abs‘(Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥))) ≤ ((abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛)) + (abs‘(log‘𝑥))))
5016nnrpd 11705 . . . . . . . . . 10 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℝ+)
51 vmage0 24592 . . . . . . . . . . 11 (𝑛 ∈ ℕ → 0 ≤ (Λ‘𝑛))
5216, 51syl 17 . . . . . . . . . 10 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ (Λ‘𝑛))
5318, 50, 52divge0d 11747 . . . . . . . . 9 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ ((Λ‘𝑛) / 𝑛))
5414, 19, 53fsumge0 14317 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (1[,)+∞)) → 0 ≤ Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛))
5554adantr 480 . . . . . . 7 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 0 ≤ Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛))
5642, 55absidd 13958 . . . . . 6 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛)) = Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛))
5721adantr 480 . . . . . . 7 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (log‘𝑥) ∈ ℝ)
584adantr 480 . . . . . . . 8 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 𝑥 ∈ ℝ)
597adantr 480 . . . . . . . 8 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 1 ≤ 𝑥)
6058, 59logge0d 24125 . . . . . . 7 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 0 ≤ (log‘𝑥))
6157, 60absidd 13958 . . . . . 6 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (abs‘(log‘𝑥)) = (log‘𝑥))
6256, 61oveq12d 6545 . . . . 5 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → ((abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛)) + (abs‘(log‘𝑥))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) + (log‘𝑥)))
6349, 62breqtrd 4604 . . . 4 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (abs‘(Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥))) ≤ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) + (log‘𝑥)))
6432ad2ant2r 779 . . . . 5 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → Σ𝑛 ∈ (1...(⌊‘𝑦))((Λ‘𝑛) / 𝑛) ∈ ℝ)
6536ad2ant2r 779 . . . . . 6 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 𝑦 ∈ ℝ+)
6665relogcld 24118 . . . . 5 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (log‘𝑦) ∈ ℝ)
67 fzfid 12592 . . . . . 6 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (1...(⌊‘𝑦)) ∈ Fin)
6828adantl 481 . . . . . . . 8 ((((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘𝑦))) → 𝑛 ∈ ℕ)
6968, 17syl 17 . . . . . . 7 ((((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘𝑦))) → (Λ‘𝑛) ∈ ℝ)
7069, 68nndivred 10919 . . . . . 6 ((((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘𝑦))) → ((Λ‘𝑛) / 𝑛) ∈ ℝ)
7168nnrpd 11705 . . . . . . 7 ((((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘𝑦))) → 𝑛 ∈ ℝ+)
7268, 51syl 17 . . . . . . 7 ((((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘𝑦))) → 0 ≤ (Λ‘𝑛))
7369, 71, 72divge0d 11747 . . . . . 6 ((((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘𝑦))) → 0 ≤ ((Λ‘𝑛) / 𝑛))
74 simprll 798 . . . . . . . 8 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 𝑦 ∈ ℝ)
75 simprr 792 . . . . . . . . 9 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 𝑥 < 𝑦)
7658, 74, 75ltled 10037 . . . . . . . 8 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 𝑥𝑦)
77 flword2 12434 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥𝑦) → (⌊‘𝑦) ∈ (ℤ‘(⌊‘𝑥)))
7858, 74, 76, 77syl3anc 1318 . . . . . . 7 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (⌊‘𝑦) ∈ (ℤ‘(⌊‘𝑥)))
79 fzss2 12210 . . . . . . 7 ((⌊‘𝑦) ∈ (ℤ‘(⌊‘𝑥)) → (1...(⌊‘𝑥)) ⊆ (1...(⌊‘𝑦)))
8078, 79syl 17 . . . . . 6 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (1...(⌊‘𝑥)) ⊆ (1...(⌊‘𝑦)))
8167, 70, 73, 80fsumless 14318 . . . . 5 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) ≤ Σ𝑛 ∈ (1...(⌊‘𝑦))((Λ‘𝑛) / 𝑛))
8274, 43, 76rpgecld 11746 . . . . . . 7 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 𝑦 ∈ ℝ+)
8343, 82logled 24122 . . . . . 6 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (𝑥𝑦 ↔ (log‘𝑥) ≤ (log‘𝑦)))
8476, 83mpbid 221 . . . . 5 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (log‘𝑥) ≤ (log‘𝑦))
8542, 44, 64, 66, 81, 84le2addd 10498 . . . 4 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) + (log‘𝑥)) ≤ (Σ𝑛 ∈ (1...(⌊‘𝑦))((Λ‘𝑛) / 𝑛) + (log‘𝑦)))
8641, 45, 46, 63, 85letrd 10046 . . 3 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (abs‘(Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥))) ≤ (Σ𝑛 ∈ (1...(⌊‘𝑦))((Λ‘𝑛) / 𝑛) + (log‘𝑦)))
8712, 13, 23, 26, 38, 86o1bddrp 14070 . 2 (⊤ → ∃𝑐 ∈ ℝ+𝑥 ∈ (1[,)+∞)(abs‘(Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥))) ≤ 𝑐)
8887trud 1484 1 𝑐 ∈ ℝ+𝑥 ∈ (1[,)+∞)(abs‘(Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥))) ≤ 𝑐
Colors of variables: wff setvar class
Syntax hints:  wb 195  wa 383  wtru 1476  wcel 1977  wral 2896  wrex 2897  wss 3540   class class class wbr 4578  cmpt 4638  cfv 5790  (class class class)co 6527  cr 9792  0cc0 9793  1c1 9794   + caddc 9796  +∞cpnf 9928   < clt 9931  cle 9932  cmin 10118   / cdiv 10536  cn 10870  cuz 11522  +crp 11667  [,)cico 12007  ...cfz 12155  cfl 12411  abscabs 13771  𝑂(1)co1 14014  Σcsu 14213  logclog 24050  Λcvma 24563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4694  ax-sep 4704  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6825  ax-inf2 8399  ax-cnex 9849  ax-resscn 9850  ax-1cn 9851  ax-icn 9852  ax-addcl 9853  ax-addrcl 9854  ax-mulcl 9855  ax-mulrcl 9856  ax-mulcom 9857  ax-addass 9858  ax-mulass 9859  ax-distr 9860  ax-i2m1 9861  ax-1ne0 9862  ax-1rid 9863  ax-rnegex 9864  ax-rrecex 9865  ax-cnre 9866  ax-pre-lttri 9867  ax-pre-lttrn 9868  ax-pre-ltadd 9869  ax-pre-mulgt0 9870  ax-pre-sup 9871  ax-addf 9872  ax-mulf 9873
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4368  df-int 4406  df-iun 4452  df-iin 4453  df-br 4579  df-opab 4639  df-mpt 4640  df-tr 4676  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-se 4988  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-isom 5799  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-of 6773  df-om 6936  df-1st 7037  df-2nd 7038  df-supp 7161  df-wrecs 7272  df-recs 7333  df-rdg 7371  df-1o 7425  df-2o 7426  df-oadd 7429  df-er 7607  df-map 7724  df-pm 7725  df-ixp 7773  df-en 7820  df-dom 7821  df-sdom 7822  df-fin 7823  df-fsupp 8137  df-fi 8178  df-sup 8209  df-inf 8210  df-oi 8276  df-card 8626  df-cda 8851  df-pnf 9933  df-mnf 9934  df-xr 9935  df-ltxr 9936  df-le 9937  df-sub 10120  df-neg 10121  df-div 10537  df-nn 10871  df-2 10929  df-3 10930  df-4 10931  df-5 10932  df-6 10933  df-7 10934  df-8 10935  df-9 10936  df-n0 11143  df-z 11214  df-dec 11329  df-uz 11523  df-q 11624  df-rp 11668  df-xneg 11781  df-xadd 11782  df-xmul 11783  df-ioo 12009  df-ioc 12010  df-ico 12011  df-icc 12012  df-fz 12156  df-fzo 12293  df-fl 12413  df-mod 12489  df-seq 12622  df-exp 12681  df-fac 12881  df-bc 12910  df-hash 12938  df-shft 13604  df-cj 13636  df-re 13637  df-im 13638  df-sqrt 13772  df-abs 13773  df-limsup 13999  df-clim 14016  df-rlim 14017  df-o1 14018  df-lo1 14019  df-sum 14214  df-ef 14586  df-e 14587  df-sin 14588  df-cos 14589  df-pi 14591  df-dvds 14771  df-gcd 15004  df-prm 15173  df-pc 15329  df-struct 15646  df-ndx 15647  df-slot 15648  df-base 15649  df-sets 15650  df-ress 15651  df-plusg 15730  df-mulr 15731  df-starv 15732  df-sca 15733  df-vsca 15734  df-ip 15735  df-tset 15736  df-ple 15737  df-ds 15740  df-unif 15741  df-hom 15742  df-cco 15743  df-rest 15855  df-topn 15856  df-0g 15874  df-gsum 15875  df-topgen 15876  df-pt 15877  df-prds 15880  df-xrs 15934  df-qtop 15939  df-imas 15940  df-xps 15942  df-mre 16018  df-mrc 16019  df-acs 16021  df-mgm 17014  df-sgrp 17056  df-mnd 17067  df-submnd 17108  df-mulg 17313  df-cntz 17522  df-cmn 17967  df-psmet 19508  df-xmet 19509  df-met 19510  df-bl 19511  df-mopn 19512  df-fbas 19513  df-fg 19514  df-cnfld 19517  df-top 20469  df-bases 20470  df-topon 20471  df-topsp 20472  df-cld 20581  df-ntr 20582  df-cls 20583  df-nei 20660  df-lp 20698  df-perf 20699  df-cn 20789  df-cnp 20790  df-haus 20877  df-cmp 20948  df-tx 21123  df-hmeo 21316  df-fil 21408  df-fm 21500  df-flim 21501  df-flf 21502  df-xms 21883  df-ms 21884  df-tms 21885  df-cncf 22437  df-limc 23381  df-dv 23382  df-log 24052  df-cxp 24053  df-cht 24568  df-vma 24569  df-chp 24570  df-ppi 24571
This theorem is referenced by:  2vmadivsum  24975
  Copyright terms: Public domain W3C validator