MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vmappw Structured version   Visualization version   GIF version

Theorem vmappw 24737
Description: Value of the von Mangoldt function at a prime power. (Contributed by Mario Carneiro, 7-Apr-2016.)
Assertion
Ref Expression
vmappw ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (Λ‘(𝑃𝐾)) = (log‘𝑃))

Proof of Theorem vmappw
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 prmnn 15307 . . . 4 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
2 nnnn0 11244 . . . 4 (𝐾 ∈ ℕ → 𝐾 ∈ ℕ0)
3 nnexpcl 12810 . . . 4 ((𝑃 ∈ ℕ ∧ 𝐾 ∈ ℕ0) → (𝑃𝐾) ∈ ℕ)
41, 2, 3syl2an 494 . . 3 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (𝑃𝐾) ∈ ℕ)
5 eqid 2626 . . . 4 {𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝑃𝐾)} = {𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝑃𝐾)}
65vmaval 24734 . . 3 ((𝑃𝐾) ∈ ℕ → (Λ‘(𝑃𝐾)) = if((#‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝑃𝐾)}) = 1, (log‘ {𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝑃𝐾)}), 0))
74, 6syl 17 . 2 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (Λ‘(𝑃𝐾)) = if((#‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝑃𝐾)}) = 1, (log‘ {𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝑃𝐾)}), 0))
8 df-rab 2921 . . . . . 6 {𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝑃𝐾)} = {𝑝 ∣ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝑃𝐾))}
9 prmdvdsexpb 15347 . . . . . . . . . . . . 13 ((𝑝 ∈ ℙ ∧ 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (𝑝 ∥ (𝑃𝐾) ↔ 𝑝 = 𝑃))
109biimpd 219 . . . . . . . . . . . 12 ((𝑝 ∈ ℙ ∧ 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (𝑝 ∥ (𝑃𝐾) → 𝑝 = 𝑃))
11103coml 1269 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ (𝑃𝐾) → 𝑝 = 𝑃))
12113expa 1262 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ (𝑃𝐾) → 𝑝 = 𝑃))
1312expimpd 628 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → ((𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝑃𝐾)) → 𝑝 = 𝑃))
14 simpl 473 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → 𝑃 ∈ ℙ)
15 prmz 15308 . . . . . . . . . . . 12 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
16 iddvdsexp 14924 . . . . . . . . . . . 12 ((𝑃 ∈ ℤ ∧ 𝐾 ∈ ℕ) → 𝑃 ∥ (𝑃𝐾))
1715, 16sylan 488 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → 𝑃 ∥ (𝑃𝐾))
1814, 17jca 554 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝑃𝐾)))
19 eleq1 2692 . . . . . . . . . . 11 (𝑝 = 𝑃 → (𝑝 ∈ ℙ ↔ 𝑃 ∈ ℙ))
20 breq1 4621 . . . . . . . . . . 11 (𝑝 = 𝑃 → (𝑝 ∥ (𝑃𝐾) ↔ 𝑃 ∥ (𝑃𝐾)))
2119, 20anbi12d 746 . . . . . . . . . 10 (𝑝 = 𝑃 → ((𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝑃𝐾)) ↔ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝑃𝐾))))
2218, 21syl5ibrcom 237 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (𝑝 = 𝑃 → (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝑃𝐾))))
2313, 22impbid 202 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → ((𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝑃𝐾)) ↔ 𝑝 = 𝑃))
24 velsn 4169 . . . . . . . 8 (𝑝 ∈ {𝑃} ↔ 𝑝 = 𝑃)
2523, 24syl6bbr 278 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → ((𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝑃𝐾)) ↔ 𝑝 ∈ {𝑃}))
2625abbi1dv 2746 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → {𝑝 ∣ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝑃𝐾))} = {𝑃})
278, 26syl5eq 2672 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → {𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝑃𝐾)} = {𝑃})
2827fveq2d 6154 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (#‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝑃𝐾)}) = (#‘{𝑃}))
29 hashsng 13096 . . . . 5 (𝑃 ∈ ℙ → (#‘{𝑃}) = 1)
3029adantr 481 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (#‘{𝑃}) = 1)
3128, 30eqtrd 2660 . . 3 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (#‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝑃𝐾)}) = 1)
3231iftrued 4071 . 2 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → if((#‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝑃𝐾)}) = 1, (log‘ {𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝑃𝐾)}), 0) = (log‘ {𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝑃𝐾)}))
3327unieqd 4417 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → {𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝑃𝐾)} = {𝑃})
34 unisng 4423 . . . . 5 (𝑃 ∈ ℙ → {𝑃} = 𝑃)
3534adantr 481 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → {𝑃} = 𝑃)
3633, 35eqtrd 2660 . . 3 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → {𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝑃𝐾)} = 𝑃)
3736fveq2d 6154 . 2 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (log‘ {𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝑃𝐾)}) = (log‘𝑃))
387, 32, 373eqtrd 2664 1 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (Λ‘(𝑃𝐾)) = (log‘𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1036   = wceq 1480  wcel 1992  {cab 2612  {crab 2916  ifcif 4063  {csn 4153   cuni 4407   class class class wbr 4618  cfv 5850  (class class class)co 6605  0cc0 9881  1c1 9882  cn 10965  0cn0 11237  cz 11322  cexp 12797  #chash 13054  cdvds 14902  cprime 15304  logclog 24200  Λcvma 24713
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903  ax-cnex 9937  ax-resscn 9938  ax-1cn 9939  ax-icn 9940  ax-addcl 9941  ax-addrcl 9942  ax-mulcl 9943  ax-mulrcl 9944  ax-mulcom 9945  ax-addass 9946  ax-mulass 9947  ax-distr 9948  ax-i2m1 9949  ax-1ne0 9950  ax-1rid 9951  ax-rnegex 9952  ax-rrecex 9953  ax-cnre 9954  ax-pre-lttri 9955  ax-pre-lttrn 9956  ax-pre-ltadd 9957  ax-pre-mulgt0 9958  ax-pre-sup 9959
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-nel 2900  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5642  df-ord 5688  df-on 5689  df-lim 5690  df-suc 5691  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-riota 6566  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-om 7014  df-1st 7116  df-2nd 7117  df-wrecs 7353  df-recs 7414  df-rdg 7452  df-1o 7506  df-2o 7507  df-oadd 7510  df-er 7688  df-en 7901  df-dom 7902  df-sdom 7903  df-fin 7904  df-sup 8293  df-inf 8294  df-card 8710  df-pnf 10021  df-mnf 10022  df-xr 10023  df-ltxr 10024  df-le 10025  df-sub 10213  df-neg 10214  df-div 10630  df-nn 10966  df-2 11024  df-3 11025  df-n0 11238  df-z 11323  df-uz 11632  df-rp 11777  df-fz 12266  df-fl 12530  df-mod 12606  df-seq 12739  df-exp 12798  df-hash 13055  df-cj 13768  df-re 13769  df-im 13770  df-sqrt 13904  df-abs 13905  df-dvds 14903  df-gcd 15136  df-prm 15305  df-vma 24719
This theorem is referenced by:  vmaprm  24738  vmacl  24739  efvmacl  24741  vmalelog  24825  vmasum  24836  chpval2  24838  rplogsumlem2  25069  rpvmasumlem  25071
  Copyright terms: Public domain W3C validator