Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  volioc Structured version   Visualization version   GIF version

Theorem volioc 39495
Description: The measure of left open, right closed interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Assertion
Ref Expression
volioc ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (vol‘(𝐴(,]𝐵)) = (𝐵𝐴))

Proof of Theorem volioc
StepHypRef Expression
1 vol0 39482 . . . 4 (vol‘∅) = 0
2 oveq2 6612 . . . . . . 7 (𝐴 = 𝐵 → (𝐴(,]𝐴) = (𝐴(,]𝐵))
32eqcomd 2627 . . . . . 6 (𝐴 = 𝐵 → (𝐴(,]𝐵) = (𝐴(,]𝐴))
4 leid 10077 . . . . . . 7 (𝐴 ∈ ℝ → 𝐴𝐴)
5 rexr 10029 . . . . . . . 8 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
6 ioc0 12164 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐴 ∈ ℝ*) → ((𝐴(,]𝐴) = ∅ ↔ 𝐴𝐴))
75, 5, 6syl2anc 692 . . . . . . 7 (𝐴 ∈ ℝ → ((𝐴(,]𝐴) = ∅ ↔ 𝐴𝐴))
84, 7mpbird 247 . . . . . 6 (𝐴 ∈ ℝ → (𝐴(,]𝐴) = ∅)
93, 8sylan9eqr 2677 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐴 = 𝐵) → (𝐴(,]𝐵) = ∅)
109fveq2d 6152 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐴 = 𝐵) → (vol‘(𝐴(,]𝐵)) = (vol‘∅))
11 eqcom 2628 . . . . . . . 8 (𝐴 = 𝐵𝐵 = 𝐴)
1211biimpi 206 . . . . . . 7 (𝐴 = 𝐵𝐵 = 𝐴)
1312adantl 482 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐴 = 𝐵) → 𝐵 = 𝐴)
14 recn 9970 . . . . . . 7 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
1514adantr 481 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐴 = 𝐵) → 𝐴 ∈ ℂ)
1613, 15eqeltrd 2698 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐴 = 𝐵) → 𝐵 ∈ ℂ)
1716, 13subeq0bd 10400 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐴 = 𝐵) → (𝐵𝐴) = 0)
181, 10, 173eqtr4a 2681 . . 3 ((𝐴 ∈ ℝ ∧ 𝐴 = 𝐵) → (vol‘(𝐴(,]𝐵)) = (𝐵𝐴))
19183ad2antl1 1221 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) ∧ 𝐴 = 𝐵) → (vol‘(𝐴(,]𝐵)) = (𝐵𝐴))
20 simpl1 1062 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) ∧ ¬ 𝐴 = 𝐵) → 𝐴 ∈ ℝ)
21 simpl2 1063 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) ∧ ¬ 𝐴 = 𝐵) → 𝐵 ∈ ℝ)
22 simpl3 1064 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) ∧ ¬ 𝐴 = 𝐵) → 𝐴𝐵)
23 eqcom 2628 . . . . . . 7 (𝐵 = 𝐴𝐴 = 𝐵)
2423biimpi 206 . . . . . 6 (𝐵 = 𝐴𝐴 = 𝐵)
2524necon3bi 2816 . . . . 5 𝐴 = 𝐵𝐵𝐴)
2625adantl 482 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) ∧ ¬ 𝐴 = 𝐵) → 𝐵𝐴)
2720, 21, 22, 26leneltd 10135 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) ∧ ¬ 𝐴 = 𝐵) → 𝐴 < 𝐵)
2853ad2ant1 1080 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐴 ∈ ℝ*)
29 rexr 10029 . . . . . . . 8 (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*)
30293ad2ant2 1081 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐵 ∈ ℝ*)
31 simp3 1061 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐴 < 𝐵)
32 snunioo2 39142 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ((𝐴(,)𝐵) ∪ {𝐵}) = (𝐴(,]𝐵))
3328, 30, 31, 32syl3anc 1323 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → ((𝐴(,)𝐵) ∪ {𝐵}) = (𝐴(,]𝐵))
3433eqcomd 2627 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝐴(,]𝐵) = ((𝐴(,)𝐵) ∪ {𝐵}))
3534fveq2d 6152 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (vol‘(𝐴(,]𝐵)) = (vol‘((𝐴(,)𝐵) ∪ {𝐵})))
36 ioombl 23240 . . . . . 6 (𝐴(,)𝐵) ∈ dom vol
3736a1i 11 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝐴(,)𝐵) ∈ dom vol)
38 snmbl 39486 . . . . . 6 (𝐵 ∈ ℝ → {𝐵} ∈ dom vol)
39383ad2ant2 1081 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → {𝐵} ∈ dom vol)
40 ubioo 12149 . . . . . . 7 ¬ 𝐵 ∈ (𝐴(,)𝐵)
41 disjsn 4216 . . . . . . 7 (((𝐴(,)𝐵) ∩ {𝐵}) = ∅ ↔ ¬ 𝐵 ∈ (𝐴(,)𝐵))
4240, 41mpbir 221 . . . . . 6 ((𝐴(,)𝐵) ∩ {𝐵}) = ∅
4342a1i 11 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → ((𝐴(,)𝐵) ∩ {𝐵}) = ∅)
44 ioovolcl 23244 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (vol‘(𝐴(,)𝐵)) ∈ ℝ)
45443adant3 1079 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (vol‘(𝐴(,)𝐵)) ∈ ℝ)
46 volsn 39490 . . . . . . 7 (𝐵 ∈ ℝ → (vol‘{𝐵}) = 0)
47 0red 9985 . . . . . . 7 (𝐵 ∈ ℝ → 0 ∈ ℝ)
4846, 47eqeltrd 2698 . . . . . 6 (𝐵 ∈ ℝ → (vol‘{𝐵}) ∈ ℝ)
49483ad2ant2 1081 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (vol‘{𝐵}) ∈ ℝ)
50 volun 23220 . . . . 5 ((((𝐴(,)𝐵) ∈ dom vol ∧ {𝐵} ∈ dom vol ∧ ((𝐴(,)𝐵) ∩ {𝐵}) = ∅) ∧ ((vol‘(𝐴(,)𝐵)) ∈ ℝ ∧ (vol‘{𝐵}) ∈ ℝ)) → (vol‘((𝐴(,)𝐵) ∪ {𝐵})) = ((vol‘(𝐴(,)𝐵)) + (vol‘{𝐵})))
5137, 39, 43, 45, 49, 50syl32anc 1331 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (vol‘((𝐴(,)𝐵) ∪ {𝐵})) = ((vol‘(𝐴(,)𝐵)) + (vol‘{𝐵})))
52 simp1 1059 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐴 ∈ ℝ)
53 simp2 1060 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐵 ∈ ℝ)
5452, 53, 31ltled 10129 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐴𝐵)
55 volioo 39471 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (vol‘(𝐴(,)𝐵)) = (𝐵𝐴))
5652, 53, 54, 55syl3anc 1323 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (vol‘(𝐴(,)𝐵)) = (𝐵𝐴))
57463ad2ant2 1081 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (vol‘{𝐵}) = 0)
5856, 57oveq12d 6622 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → ((vol‘(𝐴(,)𝐵)) + (vol‘{𝐵})) = ((𝐵𝐴) + 0))
5953recnd 10012 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐵 ∈ ℂ)
60143ad2ant1 1080 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐴 ∈ ℂ)
6159, 60subcld 10336 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝐵𝐴) ∈ ℂ)
6261addid1d 10180 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → ((𝐵𝐴) + 0) = (𝐵𝐴))
6358, 62eqtrd 2655 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → ((vol‘(𝐴(,)𝐵)) + (vol‘{𝐵})) = (𝐵𝐴))
6435, 51, 633eqtrd 2659 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (vol‘(𝐴(,]𝐵)) = (𝐵𝐴))
6520, 21, 27, 64syl3anc 1323 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) ∧ ¬ 𝐴 = 𝐵) → (vol‘(𝐴(,]𝐵)) = (𝐵𝐴))
6619, 65pm2.61dan 831 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (vol‘(𝐴(,]𝐵)) = (𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1987  wne 2790  cun 3553  cin 3554  c0 3891  {csn 4148   class class class wbr 4613  dom cdm 5074  cfv 5847  (class class class)co 6604  cc 9878  cr 9879  0cc0 9880   + caddc 9883  *cxr 10017   < clt 10018  cle 10019  cmin 10210  (,)cioo 12117  (,]cioc 12118  volcvol 23139
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-se 5034  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-isom 5856  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-of 6850  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-2o 7506  df-oadd 7509  df-er 7687  df-map 7804  df-pm 7805  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-fi 8261  df-sup 8292  df-inf 8293  df-oi 8359  df-card 8709  df-cda 8934  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-n0 11237  df-z 11322  df-uz 11632  df-q 11733  df-rp 11777  df-xneg 11890  df-xadd 11891  df-xmul 11892  df-ioo 12121  df-ioc 12122  df-ico 12123  df-icc 12124  df-fz 12269  df-fzo 12407  df-fl 12533  df-seq 12742  df-exp 12801  df-hash 13058  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-clim 14153  df-rlim 14154  df-sum 14351  df-rest 16004  df-topgen 16025  df-psmet 19657  df-xmet 19658  df-met 19659  df-bl 19660  df-mopn 19661  df-top 20621  df-bases 20622  df-topon 20623  df-cmp 21100  df-ovol 23140  df-vol 23141
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator