Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  voliooico Structured version   Visualization version   GIF version

Theorem voliooico 39972
 Description: An open interval and a left-closed, right-open interval with the same real bounds, have the same Lebesgue measure. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
voliooico.1 (𝜑𝐴 ∈ ℝ)
voliooico.2 (𝜑𝐵 ∈ ℝ)
Assertion
Ref Expression
voliooico (𝜑 → (vol‘(𝐴(,)𝐵)) = (vol‘(𝐴[,)𝐵)))

Proof of Theorem voliooico
StepHypRef Expression
1 iftrue 4083 . . . . . 6 (𝐴 < 𝐵 → if(𝐴 < 𝐵, (𝐵𝐴), 0) = (𝐵𝐴))
21adantl 482 . . . . 5 (((𝜑𝐴𝐵) ∧ 𝐴 < 𝐵) → if(𝐴 < 𝐵, (𝐵𝐴), 0) = (𝐵𝐴))
3 voliooico.2 . . . . . . . . . 10 (𝜑𝐵 ∈ ℝ)
43recnd 10053 . . . . . . . . 9 (𝜑𝐵 ∈ ℂ)
54subidd 10365 . . . . . . . 8 (𝜑 → (𝐵𝐵) = 0)
65eqcomd 2626 . . . . . . 7 (𝜑 → 0 = (𝐵𝐵))
76ad2antrr 761 . . . . . 6 (((𝜑𝐴𝐵) ∧ ¬ 𝐴 < 𝐵) → 0 = (𝐵𝐵))
8 iffalse 4086 . . . . . . 7 𝐴 < 𝐵 → if(𝐴 < 𝐵, (𝐵𝐴), 0) = 0)
98adantl 482 . . . . . 6 (((𝜑𝐴𝐵) ∧ ¬ 𝐴 < 𝐵) → if(𝐴 < 𝐵, (𝐵𝐴), 0) = 0)
10 simpll 789 . . . . . . 7 (((𝜑𝐴𝐵) ∧ ¬ 𝐴 < 𝐵) → 𝜑)
11 voliooico.1 . . . . . . . . 9 (𝜑𝐴 ∈ ℝ)
1210, 11syl 17 . . . . . . . 8 (((𝜑𝐴𝐵) ∧ ¬ 𝐴 < 𝐵) → 𝐴 ∈ ℝ)
1310, 3syl 17 . . . . . . . 8 (((𝜑𝐴𝐵) ∧ ¬ 𝐴 < 𝐵) → 𝐵 ∈ ℝ)
14 simpr 477 . . . . . . . . 9 ((𝜑𝐴𝐵) → 𝐴𝐵)
1514adantr 481 . . . . . . . 8 (((𝜑𝐴𝐵) ∧ ¬ 𝐴 < 𝐵) → 𝐴𝐵)
16 simpr 477 . . . . . . . 8 (((𝜑𝐴𝐵) ∧ ¬ 𝐴 < 𝐵) → ¬ 𝐴 < 𝐵)
1712, 13, 15, 16lenlteq 39393 . . . . . . 7 (((𝜑𝐴𝐵) ∧ ¬ 𝐴 < 𝐵) → 𝐴 = 𝐵)
18 oveq2 6643 . . . . . . . 8 (𝐴 = 𝐵 → (𝐵𝐴) = (𝐵𝐵))
1918adantl 482 . . . . . . 7 ((𝜑𝐴 = 𝐵) → (𝐵𝐴) = (𝐵𝐵))
2010, 17, 19syl2anc 692 . . . . . 6 (((𝜑𝐴𝐵) ∧ ¬ 𝐴 < 𝐵) → (𝐵𝐴) = (𝐵𝐵))
217, 9, 203eqtr4d 2664 . . . . 5 (((𝜑𝐴𝐵) ∧ ¬ 𝐴 < 𝐵) → if(𝐴 < 𝐵, (𝐵𝐴), 0) = (𝐵𝐴))
222, 21pm2.61dan 831 . . . 4 ((𝜑𝐴𝐵) → if(𝐴 < 𝐵, (𝐵𝐴), 0) = (𝐵𝐴))
2322eqcomd 2626 . . 3 ((𝜑𝐴𝐵) → (𝐵𝐴) = if(𝐴 < 𝐵, (𝐵𝐴), 0))
2411adantr 481 . . . 4 ((𝜑𝐴𝐵) → 𝐴 ∈ ℝ)
253adantr 481 . . . 4 ((𝜑𝐴𝐵) → 𝐵 ∈ ℝ)
26 volioo 23318 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (vol‘(𝐴(,)𝐵)) = (𝐵𝐴))
2724, 25, 14, 26syl3anc 1324 . . 3 ((𝜑𝐴𝐵) → (vol‘(𝐴(,)𝐵)) = (𝐵𝐴))
28 volico 39963 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (vol‘(𝐴[,)𝐵)) = if(𝐴 < 𝐵, (𝐵𝐴), 0))
2911, 3, 28syl2anc 692 . . . 4 (𝜑 → (vol‘(𝐴[,)𝐵)) = if(𝐴 < 𝐵, (𝐵𝐴), 0))
3029adantr 481 . . 3 ((𝜑𝐴𝐵) → (vol‘(𝐴[,)𝐵)) = if(𝐴 < 𝐵, (𝐵𝐴), 0))
3123, 27, 303eqtr4d 2664 . 2 ((𝜑𝐴𝐵) → (vol‘(𝐴(,)𝐵)) = (vol‘(𝐴[,)𝐵)))
32 simpl 473 . . 3 ((𝜑 ∧ ¬ 𝐴𝐵) → 𝜑)
33 simpr 477 . . . 4 ((𝜑 ∧ ¬ 𝐴𝐵) → ¬ 𝐴𝐵)
3432, 3syl 17 . . . . 5 ((𝜑 ∧ ¬ 𝐴𝐵) → 𝐵 ∈ ℝ)
3532, 11syl 17 . . . . 5 ((𝜑 ∧ ¬ 𝐴𝐵) → 𝐴 ∈ ℝ)
3634, 35ltnled 10169 . . . 4 ((𝜑 ∧ ¬ 𝐴𝐵) → (𝐵 < 𝐴 ↔ ¬ 𝐴𝐵))
3733, 36mpbird 247 . . 3 ((𝜑 ∧ ¬ 𝐴𝐵) → 𝐵 < 𝐴)
383adantr 481 . . . . . . 7 ((𝜑𝐵 < 𝐴) → 𝐵 ∈ ℝ)
3911adantr 481 . . . . . . 7 ((𝜑𝐵 < 𝐴) → 𝐴 ∈ ℝ)
40 simpr 477 . . . . . . 7 ((𝜑𝐵 < 𝐴) → 𝐵 < 𝐴)
4138, 39, 40ltled 10170 . . . . . 6 ((𝜑𝐵 < 𝐴) → 𝐵𝐴)
4239rexrd 10074 . . . . . . 7 ((𝜑𝐵 < 𝐴) → 𝐴 ∈ ℝ*)
4338rexrd 10074 . . . . . . 7 ((𝜑𝐵 < 𝐴) → 𝐵 ∈ ℝ*)
44 ioo0 12185 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴(,)𝐵) = ∅ ↔ 𝐵𝐴))
4542, 43, 44syl2anc 692 . . . . . 6 ((𝜑𝐵 < 𝐴) → ((𝐴(,)𝐵) = ∅ ↔ 𝐵𝐴))
4641, 45mpbird 247 . . . . 5 ((𝜑𝐵 < 𝐴) → (𝐴(,)𝐵) = ∅)
47 ico0 12206 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴[,)𝐵) = ∅ ↔ 𝐵𝐴))
4842, 43, 47syl2anc 692 . . . . . 6 ((𝜑𝐵 < 𝐴) → ((𝐴[,)𝐵) = ∅ ↔ 𝐵𝐴))
4941, 48mpbird 247 . . . . 5 ((𝜑𝐵 < 𝐴) → (𝐴[,)𝐵) = ∅)
5046, 49eqtr4d 2657 . . . 4 ((𝜑𝐵 < 𝐴) → (𝐴(,)𝐵) = (𝐴[,)𝐵))
5150fveq2d 6182 . . 3 ((𝜑𝐵 < 𝐴) → (vol‘(𝐴(,)𝐵)) = (vol‘(𝐴[,)𝐵)))
5232, 37, 51syl2anc 692 . 2 ((𝜑 ∧ ¬ 𝐴𝐵) → (vol‘(𝐴(,)𝐵)) = (vol‘(𝐴[,)𝐵)))
5331, 52pm2.61dan 831 1 (𝜑 → (vol‘(𝐴(,)𝐵)) = (vol‘(𝐴[,)𝐵)))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∧ wa 384   = wceq 1481   ∈ wcel 1988  ∅c0 3907  ifcif 4077   class class class wbr 4644  ‘cfv 5876  (class class class)co 6635  ℝcr 9920  0cc0 9921  ℝ*cxr 10058   < clt 10059   ≤ cle 10060   − cmin 10251  (,)cioo 12160  [,)cico 12162  volcvol 23213 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-rep 4762  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934  ax-inf2 8523  ax-cnex 9977  ax-resscn 9978  ax-1cn 9979  ax-icn 9980  ax-addcl 9981  ax-addrcl 9982  ax-mulcl 9983  ax-mulrcl 9984  ax-mulcom 9985  ax-addass 9986  ax-mulass 9987  ax-distr 9988  ax-i2m1 9989  ax-1ne0 9990  ax-1rid 9991  ax-rnegex 9992  ax-rrecex 9993  ax-cnre 9994  ax-pre-lttri 9995  ax-pre-lttrn 9996  ax-pre-ltadd 9997  ax-pre-mulgt0 9998  ax-pre-sup 9999 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-fal 1487  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-nel 2895  df-ral 2914  df-rex 2915  df-reu 2916  df-rmo 2917  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-int 4467  df-iun 4513  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-se 5064  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-pred 5668  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-isom 5885  df-riota 6596  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-of 6882  df-om 7051  df-1st 7153  df-2nd 7154  df-wrecs 7392  df-recs 7453  df-rdg 7491  df-1o 7545  df-2o 7546  df-oadd 7549  df-er 7727  df-map 7844  df-pm 7845  df-en 7941  df-dom 7942  df-sdom 7943  df-fin 7944  df-fi 8302  df-sup 8333  df-inf 8334  df-oi 8400  df-card 8750  df-cda 8975  df-pnf 10061  df-mnf 10062  df-xr 10063  df-ltxr 10064  df-le 10065  df-sub 10253  df-neg 10254  df-div 10670  df-nn 11006  df-2 11064  df-3 11065  df-n0 11278  df-z 11363  df-uz 11673  df-q 11774  df-rp 11818  df-xneg 11931  df-xadd 11932  df-xmul 11933  df-ioo 12164  df-ico 12166  df-icc 12167  df-fz 12312  df-fzo 12450  df-fl 12576  df-seq 12785  df-exp 12844  df-hash 13101  df-cj 13820  df-re 13821  df-im 13822  df-sqrt 13956  df-abs 13957  df-clim 14200  df-rlim 14201  df-sum 14398  df-rest 16064  df-topgen 16085  df-psmet 19719  df-xmet 19720  df-met 19721  df-bl 19722  df-mopn 19723  df-top 20680  df-topon 20697  df-bases 20731  df-cmp 21171  df-ovol 23214  df-vol 23215 This theorem is referenced by:  voliooicof  39976  vonn0ioo2  40667
 Copyright terms: Public domain W3C validator