Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  voliooicof Structured version   Visualization version   GIF version

Theorem voliooicof 42275
Description: The Lebesgue measure of open intervals is the same as the Lebesgue measure of left-closed right-open intervals. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypothesis
Ref Expression
voliooicof.1 (𝜑𝐹:𝐴⟶(ℝ × ℝ))
Assertion
Ref Expression
voliooicof (𝜑 → ((vol ∘ (,)) ∘ 𝐹) = ((vol ∘ [,)) ∘ 𝐹))

Proof of Theorem voliooicof
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 volioof 42266 . . . . 5 (vol ∘ (,)):(ℝ* × ℝ*)⟶(0[,]+∞)
21a1i 11 . . . 4 (𝜑 → (vol ∘ (,)):(ℝ* × ℝ*)⟶(0[,]+∞))
3 rexpssxrxp 10680 . . . . 5 (ℝ × ℝ) ⊆ (ℝ* × ℝ*)
43a1i 11 . . . 4 (𝜑 → (ℝ × ℝ) ⊆ (ℝ* × ℝ*))
5 voliooicof.1 . . . 4 (𝜑𝐹:𝐴⟶(ℝ × ℝ))
62, 4, 5fcoss 41466 . . 3 (𝜑 → ((vol ∘ (,)) ∘ 𝐹):𝐴⟶(0[,]+∞))
76ffnd 6509 . 2 (𝜑 → ((vol ∘ (,)) ∘ 𝐹) Fn 𝐴)
8 volf 24124 . . . . . 6 vol:dom vol⟶(0[,]+∞)
98a1i 11 . . . . 5 (𝜑 → vol:dom vol⟶(0[,]+∞))
10 icof 41475 . . . . . . . . . 10 [,):(ℝ* × ℝ*)⟶𝒫 ℝ*
1110a1i 11 . . . . . . . . 9 (𝜑 → [,):(ℝ* × ℝ*)⟶𝒫 ℝ*)
1211, 4, 5fcoss 41466 . . . . . . . 8 (𝜑 → ([,) ∘ 𝐹):𝐴⟶𝒫 ℝ*)
1312ffnd 6509 . . . . . . 7 (𝜑 → ([,) ∘ 𝐹) Fn 𝐴)
145adantr 483 . . . . . . . . . 10 ((𝜑𝑥𝐴) → 𝐹:𝐴⟶(ℝ × ℝ))
15 simpr 487 . . . . . . . . . 10 ((𝜑𝑥𝐴) → 𝑥𝐴)
1614, 15fvovco 41448 . . . . . . . . 9 ((𝜑𝑥𝐴) → (([,) ∘ 𝐹)‘𝑥) = ((1st ‘(𝐹𝑥))[,)(2nd ‘(𝐹𝑥))))
175ffvelrnda 6845 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → (𝐹𝑥) ∈ (ℝ × ℝ))
18 xp1st 7715 . . . . . . . . . . 11 ((𝐹𝑥) ∈ (ℝ × ℝ) → (1st ‘(𝐹𝑥)) ∈ ℝ)
1917, 18syl 17 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (1st ‘(𝐹𝑥)) ∈ ℝ)
20 xp2nd 7716 . . . . . . . . . . . 12 ((𝐹𝑥) ∈ (ℝ × ℝ) → (2nd ‘(𝐹𝑥)) ∈ ℝ)
2117, 20syl 17 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → (2nd ‘(𝐹𝑥)) ∈ ℝ)
2221rexrd 10685 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (2nd ‘(𝐹𝑥)) ∈ ℝ*)
23 icombl 24159 . . . . . . . . . 10 (((1st ‘(𝐹𝑥)) ∈ ℝ ∧ (2nd ‘(𝐹𝑥)) ∈ ℝ*) → ((1st ‘(𝐹𝑥))[,)(2nd ‘(𝐹𝑥))) ∈ dom vol)
2419, 22, 23syl2anc 586 . . . . . . . . 9 ((𝜑𝑥𝐴) → ((1st ‘(𝐹𝑥))[,)(2nd ‘(𝐹𝑥))) ∈ dom vol)
2516, 24eqeltrd 2913 . . . . . . . 8 ((𝜑𝑥𝐴) → (([,) ∘ 𝐹)‘𝑥) ∈ dom vol)
2625ralrimiva 3182 . . . . . . 7 (𝜑 → ∀𝑥𝐴 (([,) ∘ 𝐹)‘𝑥) ∈ dom vol)
2713, 26jca 514 . . . . . 6 (𝜑 → (([,) ∘ 𝐹) Fn 𝐴 ∧ ∀𝑥𝐴 (([,) ∘ 𝐹)‘𝑥) ∈ dom vol))
28 ffnfv 6876 . . . . . 6 (([,) ∘ 𝐹):𝐴⟶dom vol ↔ (([,) ∘ 𝐹) Fn 𝐴 ∧ ∀𝑥𝐴 (([,) ∘ 𝐹)‘𝑥) ∈ dom vol))
2927, 28sylibr 236 . . . . 5 (𝜑 → ([,) ∘ 𝐹):𝐴⟶dom vol)
30 fco 6525 . . . . 5 ((vol:dom vol⟶(0[,]+∞) ∧ ([,) ∘ 𝐹):𝐴⟶dom vol) → (vol ∘ ([,) ∘ 𝐹)):𝐴⟶(0[,]+∞))
319, 29, 30syl2anc 586 . . . 4 (𝜑 → (vol ∘ ([,) ∘ 𝐹)):𝐴⟶(0[,]+∞))
32 coass 6112 . . . . . 6 ((vol ∘ [,)) ∘ 𝐹) = (vol ∘ ([,) ∘ 𝐹))
3332a1i 11 . . . . 5 (𝜑 → ((vol ∘ [,)) ∘ 𝐹) = (vol ∘ ([,) ∘ 𝐹)))
3433feq1d 6493 . . . 4 (𝜑 → (((vol ∘ [,)) ∘ 𝐹):𝐴⟶(0[,]+∞) ↔ (vol ∘ ([,) ∘ 𝐹)):𝐴⟶(0[,]+∞)))
3531, 34mpbird 259 . . 3 (𝜑 → ((vol ∘ [,)) ∘ 𝐹):𝐴⟶(0[,]+∞))
3635ffnd 6509 . 2 (𝜑 → ((vol ∘ [,)) ∘ 𝐹) Fn 𝐴)
3719, 21voliooico 42271 . . 3 ((𝜑𝑥𝐴) → (vol‘((1st ‘(𝐹𝑥))(,)(2nd ‘(𝐹𝑥)))) = (vol‘((1st ‘(𝐹𝑥))[,)(2nd ‘(𝐹𝑥)))))
385, 4fssd 6522 . . . . 5 (𝜑𝐹:𝐴⟶(ℝ* × ℝ*))
3938adantr 483 . . . 4 ((𝜑𝑥𝐴) → 𝐹:𝐴⟶(ℝ* × ℝ*))
4039, 15fvvolioof 42268 . . 3 ((𝜑𝑥𝐴) → (((vol ∘ (,)) ∘ 𝐹)‘𝑥) = (vol‘((1st ‘(𝐹𝑥))(,)(2nd ‘(𝐹𝑥)))))
4139, 15fvvolicof 42270 . . 3 ((𝜑𝑥𝐴) → (((vol ∘ [,)) ∘ 𝐹)‘𝑥) = (vol‘((1st ‘(𝐹𝑥))[,)(2nd ‘(𝐹𝑥)))))
4237, 40, 413eqtr4d 2866 . 2 ((𝜑𝑥𝐴) → (((vol ∘ (,)) ∘ 𝐹)‘𝑥) = (((vol ∘ [,)) ∘ 𝐹)‘𝑥))
437, 36, 42eqfnfvd 6799 1 (𝜑 → ((vol ∘ (,)) ∘ 𝐹) = ((vol ∘ [,)) ∘ 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  wral 3138  wss 3935  𝒫 cpw 4538   × cxp 5547  dom cdm 5549  ccom 5553   Fn wfn 6344  wf 6345  cfv 6349  (class class class)co 7150  1st c1st 7681  2nd c2nd 7682  cr 10530  0cc0 10531  +∞cpnf 10666  *cxr 10668  (,)cioo 12732  [,)cico 12734  [,]cicc 12735  volcvol 24058
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-inf2 9098  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-se 5509  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-isom 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7403  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-oadd 8100  df-er 8283  df-map 8402  df-pm 8403  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-fi 8869  df-sup 8900  df-inf 8901  df-oi 8968  df-dju 9324  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-n0 11892  df-z 11976  df-uz 12238  df-q 12343  df-rp 12384  df-xneg 12501  df-xadd 12502  df-xmul 12503  df-ioo 12736  df-ico 12738  df-icc 12739  df-fz 12887  df-fzo 13028  df-fl 13156  df-seq 13364  df-exp 13424  df-hash 13685  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-clim 14839  df-rlim 14840  df-sum 15037  df-rest 16690  df-topgen 16711  df-psmet 20531  df-xmet 20532  df-met 20533  df-bl 20534  df-mopn 20535  df-top 21496  df-topon 21513  df-bases 21548  df-cmp 21989  df-ovol 24059  df-vol 24060
This theorem is referenced by:  ovolval5lem3  42930
  Copyright terms: Public domain W3C validator